

Algorithms and Architecture for Managing Evolving ETL Workflows in a Big Data Environment

Judith Awiti Esteban Zimányi (Home Supervisor) : Université Libre de Bruxelles Robert Wrembel (Host Supervisor) : Poznań University of Technology

Problem Statement

Objectives

- 1. To propose a methodology for designing ETL processes that will facilitate a smooth transition from gathering user requirements to the actual implementation. This methodology will include all aspects of ETL design, from conceptual modelling to physical implementation
- 2. To develop a framework to (semi-) automatically repair ETL workflows upon data source changes

Currently focusing on relational data

ETL Modelling

Scenario: The part supplier DW project

	ATTRIBUTES
S1.PARTSUPP	<u>Pkey</u> , Qty, Date, Department, Cost
S2.PARTSUPP	<u>Pkey</u> , <u>SuppKey</u> , Qty, Cost
DW.PARTSUPP	<u>Pkey</u> , <u>SuppKey</u> , <u>Date</u> , Qty, Cost

Transformations:

- Surrogate Key assignment
- Convert Date and Cost to European formats (S1 is an American source whereas S2 is an European source)
- Add **SuppKey** for **S1** (which is a constant value of 1 or 2)
- Aggregate sum of **Qty** and **Cost** in S1 (S1 stores department data, S2 ignores department detail)
- Not null check for **Cost** in **S2**
- Get System date for **S2**

Graph: Conceptual modelling

- Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL processes. In: Proc. of the 5th ACM International workshop on Data Warehousing and OLAP, DOLAP 2002. pp. 14–21. ACM, McLean, Virginia, USA (2002)

Graph: Logical modelling (Architecture Graph)

- Part of the scenario for S1.PARTSUPP:
- Add Supplier Key (AddSPK), and Surrogate key (SK)

- Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL activities as graphs. In: Proc. of the 4th International Workshop on Design and Management of Data Warehouses, DMDW 2002. pp. 52–61. CEUR-WS.org, Toronto, Canada (2002)

Graph

Pros

- Provides first steps toward translating a conceptual to a corresponding logical model
- Graph-based models are used (standard and widely accepted)

Cons

- Complex conceptual and logical Design
- Difficult to transform from conceptual model to logical model. Require excessive training even for technical experts to model complex scenarios
- Architecture graph is only implemented using a custom-built tool (ARKTOS)
- Not suitable for ETL workflow reparation due to complexity

Trujillo, J., Luján-Mora, S.: A UML based approach for modeling ETL processes in data warehouses. In: Proc. of the 22 nd International Conference on Conceptual Modeling, ER 2003. pp. 307–320. Springer, Chicago, Illinois, USA (2003)

ETL Modelling (Current Approaches)

UML

Pros

- UML is a standard modelling language
- ETL activities (e.g., aggregations, conversions, etc) can be plugged in easily
- Less complex because user is not overwhelmed with inter-attribute mappings

Cons

- No corresponding logical or implementation model
- Knowledge of UML needed
- Not suitable for showing the control flow or the run-time communication structure of these processes

ETL Modelling (Our approach)

ETL Modelling (Our Approach)

BPMN4ETL: Conceptual modelling

Pros

- BPMN is a standard modelling language
- Models both control and data flow
- ETL activities (e.g., aggregations, conversions, etc) can be plugged in easily
- Less complex because user is not overwhelmed with inter-attribute mappings
- Easy communication and validation between an operational database designer, an ETL designer and a business intelligence analyst
- Exposes the manipulation of data and their order from one ETL task to the other
- Can be used for documentation
- Can be translated directly to relational algebra, SQL, or an XML interchange format

Cons

Knowledge of BPMN needed

ETL Modelling (Our Approach)

Extended Relational Algebra

Operator	Notation	Operator	Notation	
Selection	$\sigma_C(R)$	Aggregate	$\left \mathcal{A}_{A_1,\ldots,A_m C_1=F_1(B_1),\ldots,C_n=F_n(B_n)}(R)\right $	
Projection	$\pi_{A_1,\ldots,A_n}(R)$	Delete	$R \leftarrow R - \sigma_C(R)$	
Cartesian Product	$\hat{R}_1 imes \hat{R}_2$	Extend	$\mathcal{E}_{A_1 = Expr_1, \dots, A_n = Expr_n}(R)$	
Union	$R_1 \cup R_2$	Input	$R \leftarrow \mathcal{I}_{A_1, \dots, A_n}(F)$	
Intersection	$R_1 \cap R_2$	Insert	$R \leftarrow R \cup S$ or $R \leftarrow S$	
Difference	$R_1 - R_2$	Lookup	$R \leftarrow \pi_{A_1, \dots, A_n} (R_1 \bowtie_C R_2)$	
Join	$R_1 \bowtie_C R_2$	Remove duplicates	$\delta(R)$	
Natural Join	$R_1 * R_2$	Rename	$\rho_{A_1 \leftarrow B_1, \dots, A_n \leftarrow B_n}(R)$ or $\rho_S(R)$	
Left Outer Join	$R_1 \supset C R_2$	Sort	$ au_A(R)$	
Right Outer Join	$R_1 \bowtie_C R_2$	Update	$\mathcal{U}_{A_1 = Expr_1, \dots, A_n = Expr_n \mid C}(R)$	
Full Outer Join	$R_1 \supset C_C R_2$	Update Set	$R \leftarrow \mathcal{U}(R)_{A_1 = Expr_1, \dots, A_n = Expr_n \mid C}(S)$	
Semijoin	$R_1 \ltimes_C R_2$	-		
Division	$R_1 \div R_2$			

ETL Modelling (Our Approach)

Relational Algebra: Logical modelling

Temp1
$$\leftarrow \mathcal{I}_{Pkey, Qty, Department, Cost}(SI.PARTSUPP)$$
(1)Temp2 $\leftarrow \mathcal{E}_{Suppkey = AddSPK(Pkey)}(Temp1)$ (2)Temp3 $\leftarrow \pi_{Skey, Pkey, Suppkey, Qty, Department, Cost}(Temp2 \bowtie_{Pkey = Pkey \land Suppkey = Source} LOOKUP_PS)$ (3)Temp4 $\leftarrow \mathcal{U}_{Date = American2European(Date), Cost = Dollar2Euro(Cost)}(Temp3)$ (4)Temp5 $\leftarrow \mathcal{A}_{Pkey, Suppkey, Date|Cost = SUM(Cost), Qty = SUM(Qty)}(Temp4)$ (5)

Pros

- RA provides a set of operators that manipulates relations to ensure that there is no ambiguity
- Can also be directly translated into SQL to be executed in any Relational Database Management System (RDBMS). We avoid dealing with the peculiarities of a particular programming language
- When extended with update operations, the can provide a logical model of different ETL scenarios. E.g. Slowly changing dimension with dependencies found in the TPC-DI Benchmark

Limitations

Difficult to model certain complex tasks in relational algebra even though they can be done directly with SQLs. (E.g. window functions and loops)

ETL Modelling (Experiments)

Experimental Evaluation

Experiments implemented in two ways:

- 1. Using Pentaho PDI, translating the BPMN4ETL directly into Pentaho PDI
- 2. Using RA, translating BPMN4ETL into extended RA, and then implementing the RA operations using Postgres PLSQL.

TPC-DI Benchmark

- Data sources are of different formats (xml, csv, txt, and so on)
- Source data model: Based on a fictitious retail brokerage firm and external sources
- Target data model: Has a snowstorm schema
- One historical load and two identical incremental loads
- Scale factor (number of records) 3 (4.5 million), 5 (7.8 million), 10 (16.1 million)

Platform: Intel i7 computer, with a RAM of 16 GB, running the Windows 10 Enterprise operating system, using the Postgres SQL database as the DW storage

ETL Modelling (Experiments)

Performance:

Execution times to complete TPC-DI benchmark Load

Time = hours:minutes:seconds

		Historical	Incremental 1	Incremental 2
SF-3	PLSQL	00:12:50	00:00:09	00:00:07
	PDI	11:23:52	00:01:32	00:01:40
SF-5	PLSQL	00:22:31	00:00:15	00:00:14
	PDI	20:25:32	00:03:03	00:03:11
SF-10	PLSQL	02:11:15	00:00:39	00:00:36
	PDI	25:08:13	00:11:35	00:12:38

Pentaho PDI Optimization

- PDI memory limit was increased from 2G to 4G
- PDI performance tuning tips were applied ^[2]
 - [2] https://help.pentaho.com/Documentation/7.1/0P0/100/040/010

ETL Modelling (XML Interchange format)

BPMN4ETL eXchange format (BEXF)

Load of DW.PARTSUPP Dimension

```
<ETLProcess id="_idProcess" name="Load of DW.PARTSUPP dimension table">
 <ETLTask id="_idInputData" name="Input Data" type="Input Data">
    <Database name="S1"/>
    <Table name="S1.PARTSUPP"/>
    <inputs>
    <inputColumn name="Pkey"/>
    <inputColumn name="Qty"/>
    <inputColumn name="Date"/>
    <inputColumn name="Department"/>
    <inputColumn name="Cost"/>
    </inputs>
    <inRefId>_idS1</inRefId>
    <outRefId>_idS2</outRefId>
 </ETLTask>
 <ETLTask id="_idAggregate" name="Aggregate" type="Aggregate">
    <AggColumn name="Pkey" order="1"/>
    <AggColumn name="Suppkey" order="2"/>
    <AggColumn name="Date" order="3"/>
   <NewColumn name="Cost" function="SUM(Cost)"/>
    <NewColumn name="Qty" function="SUM(Qty)"/>
    <inRefId>_idS6</inRefId>
    <outRefId>_idS7</outRefId>
 </ETLTask>
</ETLProcess>
```

ETL Evolution (Current Approaches)

- *Hecataeus* based on rules/policies
 - Papastefanatos, G., Vassiliadis, P., Simitsis, A., & Vassiliou, Y.: Policy-regulated management of ETL evolution. In Journal on Data Semantics XIII, 2009
- E-ETL based on case-based reasoning
 - Wojciechowski, A.: ETL workflow reparation by means of case-based reasoning. Information Systems Frontiers 20(1): 21-43, 2018

ES

Ц

RUX

EDE

BR

SIT

NIVER

ETL Evolution (Current Approaches)

HECATAEUS

- Abstract ETL activities as queries and sequence of views
- Transforms SQL queries to graph
- User annotate graph with rules/policies (Propagate, Block, Prompt)
- System detects parts of the graph affected by a change in data source and highlights the way they respond to it

ETL Evolution (Current Approaches)

HECATAEUS

DS change = Add *Phone* to *EMP*

Policy = *Propagate*

Q: SELECT EMP.Emp# as Emp#, Sum(WORKS.Hours) as T_Hours FROM EMP, WORKS WHERE EMP.Emp# = WORKS.Emp# AND EMP.STD_SAL >5000 GROUP BY EMP.Emp# Detailed graph representation of ETL1_ACT9

ETL Evolution (Current Approaches)

Concerns with Hecataeus

- Near manual policies must be explicitly stated for each node
- User must determine policy in advance before evolution event occurs
- No explanation on how graph is constructed or how the evolution event discovered

ETL Evolution (Current Approaches)

E-ETL

- Applies case-based reasoning
- Keeps *library of repair cases (LRC)* as knowledge base

Concerns with E-ETL

- Developers cannot guarantee correctness
- It needs a case base in advance to work

ETL Evolution (Our approach)

Subgoals:

- Develop algorithms for (semi-)automatic repair of ETL workflows upon DS changes
 - Rules may be inferred from cases
 - Cases may be built from applying rules
 - Rule based + Case based (a quality measure for RB and CB)
- Develop an architecture for handling ETL evolution
- Implement a prototype
- Verify the applicability of the proposed solution with the TPC-DI benchmark
 - Poess, M., Rabl, T., Jacobsen, H. A., & Caufield, B.:. TPC-DI: the first industry benchmark for data integration. *Proceedings of the VLDB Endowment*, 7(13), 2014

ETL Evolution (Our approach)

Extended Evolving ETL (E3TL) framework

ULB

RBR + CBR

- ETL workflows are rewritten by applying rules
- Rules are inferred from cases (By applying algorithms)
- Cases are built from user input

ETL Evolution (Our approach)

Extended Evolving ETL (E3TL) framework – Learns rules from user input

Components:

ETL Parser: The ETL parser takes an entire ETL workflow in the form of RA or SQLs and parses the parts of each command of the workflow

ETL Manager: The ETL manager assesses the impact of the data source change on each command of the ETL workflow and takes these decisions by applying rules stored in a the rule base

ETL Rewriter: This component of the framework rewrites the commands in the ETL workflow by applying recommendations from the ETL manager

Rule Base: This contains distinct rules based on conditions

User Input: This part of the framework request the user's input if any of the following conditions is true:

- no rule is available in the rule base to deal with the problem
- several solutions are applicable to solve the problem

Case Base: This is a repository to store cases

Translator: This component applies algorithms to develop distinct rules from cases

Publication Strategy

- Conference paper: From Conceptual to Logical ETL Design using BPMN and Relational Algebra
 - Authors: Judith Awiti, Alejandro Vaisman, Esteban Zimányi
 - Target venue: DAWAK 2019 Accepted
- Workshop paper: An XML Interchange Format for ETL Models
 - Authors: Judith Awiti, Esteban Zimányi
 - Target venue: ADBIS 2019 Accepted
- PhD Consortium paper: Algorithms and Architecture for Managing Evolving ETL Workflows Authors: Judith Awiti
 - Target venue: ADBIS 2019 Accepted
- Conference paper: Rule-based management of evolving ETL workflows
 - Authors: Judith Awiti, Esteban Zimányi, Robert Wrembel
 - Target venue: DOLAP 2020
 - Deadline: November 2019
- Journal paper: Management of evolving ETL workflows with a combination of RBR and CBR
 - Authors: Judith Awiti, Esteban Zimányi, Robert Wrembel
 - Target Journal: ACM Transactions on information systems
 - Deadline: March 2020
- Journal paper: (E3TL) on (semi-)automatic repairs of ETL workflows Authors: Judith Awiti, Esteban Zimányi, Robert Wrembel Target venue: Journal of the Association for Information Systems Deadline: To be decided
- Journal paper: A review of methods of ETL workflow reparation Authors: Judith Awiti, Esteban Zimányi, Robert Wrembel Target venue: Information Systems Management Deadline: To be decided