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PPRL Challenges
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Parallel PPRL with GPUs

• Use GPUs to speed up the 
computation to link the data. P4Join is 
used as filtering technique in the GPU

• Trade off → GPUs have smaller 
memory, therefore the tasks need to be 
divided and executed multiple times 

• Solution → Hybrid CPU/GPU

• Results → Using the hybrid CPU/GPU 
approach, there is an improvement of 
10-20% comparing with the approach of 
using the GPU only

Parallel PPRL with Hadoop 
Ecosystem
• HDFS → to store large datasets
• MapReduce → links records
• LSH blocking method with MinHash

• If two values are associated to one 
specific key → chain two MapReduce 
jobs
• First MapReduce → Bloom filter 

identifiers will be redistributed and 
the data will be store in a RDBMS

• Second MapReduce → link the 
records and output the pair records 
identifiers

Parallel PPRL with Apache 
Flink
• Apache Flink 
• LSH blocking method with HLSH

• Data owners →  encode their data
• Linkage unit → generates the linkage

• If a record does not have a key → LU 
generates one key

• Stores these data in HDFS, 
distributing and replicating among 
nodes

• Group records by block key
• The matching IDs are sent to their 

owners

Data encoding
• 1-way encoding preventing re-identification and discrimination
• Cryptographic-based, Perturbation-based (k-anonymity, Bloom Filters → 

scalable), Hybrid approaches.
• Bloom Filters: Splits each QID into q-grams and use different hash 

functions to create Bloom filter. The Dice-coefficient is applied to check the 
similarity. Example checking similarity of SMITH and SMYTH

Applications
• Healthcare → «statistical information would become more 

meaningful because it would be linked to other types of data» 
Halbert Dunn (1946)

• City Analytics →  Sensitive data is essential to bring 
data-driven intelligence to cities.

• PIMS → PIMS allow individuals to manage their personal data 
in secure, local or online storage systems and share them 
when and with whom they choose

Conclusions
• Challenges balancing conflicting requirements → high 

privacy,  link quality and scalability to large datasets
• Big Data variety reduces the match quality → difficult to 

manage with multi-party integration
• There are no standard methods to evaluate the privacy level 

of PPRL protocols

Source 
A

Source 
B

+ Big Data

compare (Ainhoa, Ainoa) + Big 
Data 
→ string comparators that account 
for variations in attributes

Need to balance the 
privacy level with good 
matching results

Privacy-Preserving Record Linkage
Goal: Identify and link records that refer to 
the same entity/individual in different data 
sources without compromising privacy and 
confidentiality of these entities/individuals

➔ Anonymization: removing, generalizing 
or changing quasi-identifiers reduces data 
utility

➔ Pseudonymization: Encode 
quasi-identifiers to preserve privacy & 
data utility.

PPRL Protocols PPRL Process
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