Introduction & Motivation

e Deep Learning (DL) is a machine learning
technique that has evolved the way current
research and applications are carryout in the
area.
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e From the ideas of Convolutional Neural
Networks (CNN), Recurrent Neural Networks
(RNN) and more recently Generative
Adversarial Networks researches have
produced new techniques fine-tuned to
consider the specificities of graphs.

SEHEES

e Irregular domain: Graphs lie in an irregular

domain, making it hard to generalize some
basic mathematical operations.

e Varying structures and tasks: Graph itself can
be complicated with diverse structures.
Graphs also vary greatly, ranging from
node-focused problems such as node
classification and link prediction.

e Scalability and parallelization: Real graphs
can easily have millions of nhodes and edges.
As a result, how to design scalable models,
with a linear time complexity, is a problem.
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Graph Embedding

Graph Embeddings is just a way of representing
the latent information present in the graph in a
convenient structure more easy to handle and
to apply well known mathematical operations
than a graph.

e Matrix Decomposition & Random Walk:

These methods are not properly deep learning
e Deep Learning: Inside this are:
- Autoencoders: Learn the vector representation
- Variational Autoencoders: Learn the parameters of a
probability distribution to generate samples
afterwards.
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Graph Convolutional Networks

Graph Convolution Networks (GCNs) generalize
the convolution operations from euclidean (or
orid-like) structures to a non-Euclidean domain,
such as graphs.

e GCN approaches: Spectral and Spatial. In
comparison, spatial approaches outperforms
spectral ones in terms of generality, flexibility
and efficiency and thus have attracted
Increasing attention in recent years.

e Different graph analytics task: node-level node
regression and classification tasks, edge-level
(edge classification and link prediction),
graph-level (graph classification).

e Types of training: Semi-supervised learning for
node-level classification, Supervised learning
for graph-level classification, Unsupervised
learning for graph embedding.

e Graph convolution networks is used as
building blocks by other methods: graph
attention networks, graph auto encoders,
graph generative networks and graph spatial
temporal networks.
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Applications

e Computer Vision: Scene graph generation,
point clouds classification and segmentation,
and action recognition.

e Chemistry: In chemistry, study of the graph
structure of molecules.

e Network analysis: Classification in network
analysis can be improved by using information

from neighbor vertices.

Datasets & Results

e Academic Citations: Cora, Citeseer, Pubmed,
HEP-TH and DBLP.

e Social Networks: BlogCatalog, Reddit,
Epinions, GDELT, Github Dataset, Social
Evolution Dataset, Enron and FB-FORUM.

Results are not consistent across the literature
with best results ranging from 78% to 98% for
different datasets for node classification task.

Conclusions & Future Directions

e The literature is not clear when is defining
what kind of graph are dealing.

e Spatial models have proven to outperform
spectral approaches.

e Small steps integrating Generative Adversarial
Networks and Reinforcement Learning have
been already done.

e Dealing with dynamic graph where edges and
nodes are removed/inserted is an open field.

e Going deeper will bring scalability problems,
sampling strategic and sub-graphs
explorations could solve the problems.
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