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Abstract

Terminologies:
Privacy classification of data: 

• Identity Attributes
• Sensitive Attributes
• Non-sensitivie Attributes

De-identification techniques:
• Anonymization
• Pseudonymization (Data masking)

Introduction

PPRL applied to Big Data poses several challenges:
• Scalability: the nº comparisons required for 

classifying record pairs or sets equals to the 
product of the size of the databases that are 
linked. This is a performance bottleneck since it 
potentially requires comparison of all record 
pairs/sets using expensive comparison functions. 
Due to the increasing size of Big Data (volume), 
comparing all records is not feasible in most real-
world applications. 

• Linkage quality: the challenge of dealing with 
typographical errors and other variations in data 
(variety and veracity).

• Privacy: needs to be considered in all steps as 
only the masked records can be used, making 
the task of linking databases across organizations 
more challenging.

Challenges of PPRL

• Many of the discussed data masking techniques 
lack scalability which is a main challenge of PPRL 
and a characteristic of Big data.

• More research is required towards the 
development of techniques that allow for 
multiple large databases to be linked in privacy-
preserving, effective, and efficient ways.

• Advanced classification and matching techniques 
for PPRL still need to be further developed to 
allow secure and efficient de-identification. 

• There is also a requirement to develop a 
comprehensive architecture which combines 
data publisher and data recipient. In distributed 
environment, efficiency will pay an important 
role, so an efficient algorithm which tries to 
balance between sensitive disclosure, data utility 
and communication cost is required.

Future Work

• There is a considerably increasing need of novel PPRL .
• PPRL open challenges: Improving Scalability, Improving Linkage Quality, Dynamic Data and Real-Time 

Matching, Improving Security and Privacy, Evaluation, Frameworks, and Benchmarks
• Many of the PPRL current approaches focus on two parties and are not oriented for multi-parity 
• Benchmarks and evaluation models of current data masking techniques are rather immature
• Each PPRL technique focus on one at a time challenge only : scalability, linkage quality, or privacy

Conclusions

Nowadays, a huge amount of personal data is 
stored and needs to be analysed. The analysis of 
private personal data becomes increasingly 
complicated and complex, since the data come from 
multiple sources. In order to solve this problem, the 
Privacy-preserving record linkage (PPRL) was 
developed.

Privacy-preserving record linkage (PPRL) aims at 
integrating person-related data without revealing 
sensitive information. PPRL is being required in 
many real-world areas such as public health 
surveillance to crime and fraud detection. 

Data Masking Techniques

Fig 1. PPRL process
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Fig 3. Data Masking process

Fig 4. Data Masking Tools

Privacy concerns:
Adversary Models:

• Honest-but-curious (HBC) or semi-honest
• Malicious
• Covert and accountable computing

Attacks:
• Dictionary attack
• Frequency attack
• Cryptanalysis attack
• Composition attack
• Collusion

Data Masking techniques:
• Auxiliary:

• Pseudo random function (PRF)
• Reference values
• Noise addition
• Differential privacy

• Blocking:
• Phonetic encoding,
• Generalization techniques

• Matching:
• Secure hash-encoding
• Statistical linkage key (SLK)
• Embedding space
• Encryption schemes,
• Bloom filter
• Count-min sketches

With Privacy Preserving Data Mining (PPDM) 
between organisations and governments being on 
the rise, exchange methods for privacy preserving 
of identifying data have seen the light. Privacy 
Preserving Record Linkage (PPRL) is one of them. It 
allows for secure data sharing among data owners 
while minimizing the risk of identifying individuals.


