

UNSUPERVISED LEARNING: SIMILARITIES AND DISTANCE FUNCTIONS FOR IOT DATA

G. CASOLLA, V. SCHIANO, S. CUOMO, F. GIAMPAOLO, F. PICCIALLI University of Naples Federico II

INTRODUCTION (1)

In our research we studied visitors' behaviours inside one of the most important museum in Italy, the National Archaeological Museum of Naples, through a deployed IoT framework. It is composed by smart sensor boards with Bluetooth and Wi-Fi capabilities. The IoT system is able to track a visitor path by collecting his position and the related time-of-stay inside the museum rooms [1]. Our dataset relies on about 19 000 unique users behavioural data composed by two features: (i) the visiting *Path* (non-numerical data) and (ii) the *Time* spent (numerical data).

Classifying unstructured and unlabelled data is a key challenge dealing

with three main research tasks:

- the study and selection of the appropriate similarity and distance functions,
- the selection of the number of clusters in which partitioning the data,
- the choice of the most suitable algorithm to achieve an accurate data clustering.

THEORY (2)

The Clustering algorithms we considered are:

- Hierarchical Clustering
- K-Medoids (PAM)

A similarity function is a *tool* that gives the strength of the relationship between two or more data items.

SIMILARITIES AND DISTANCE FUNCTIONS (3)

```
(a) - Cosine similarity
v(S;q) = v(S;q)
```

 $s_{cos}(S,T;q) = \frac{v(S;q) \cdot v(T;q)}{\|v(S;q)\|_2 \|v(T;q)\|_2}$

(b) - Jaccard similarity

 $s_{\text{Jac}}(S,T;q) = \frac{|Q(S;q) \cap Q(T;q)|}{|Q(S;q) \cup Q(T;q)|}$

(b)

To deal with the non-numerical *Path* feature of our dataset, that can be treated as a string, we have analyzed four strings similarity functions. A string can be defined as sequence of finite characters from a finite alphabet. A *q*-gram is a string with *q* consecutive characters. The *q*-grams from a string *S* are realized by collecting in sequences *q* characters from S and saving the appearing qgrams. To deal with the numerical *Time* feature we have pre-computed the distance matrix by using the well-known Euclidean dis*tance* and then merged with the other strings' distances with the formula defined as follows: K

$$D_{sum} = \sum_{i=1}^{K} \omega_i D^{(i)}$$

where $D^{(i)}$ is a single distance matrix, K is the total number of distances that we want to merge and ω_i is the inverse of the maximum element of the *i*-th distance matrix $D^{(i)}$. It's shown that, to improve the performance of a classification, it is better to combine multiple distances than to use a single distance matrix [2].

(c) - Longest Common Substring

$$d_{LCS}(S,T) = \frac{LCS(n,m)}{n+m}$$

 $LCS(i,j) = \begin{cases} \max(i,j) & \text{if } \min(i,j) = 0, \\ LCS(i-1,j-1) & \text{if } S(i) = T(j), \\ 1 + \min\{LCS(i-1,j), LCS(i,j-1)\} & otherwise \end{cases}$

(d) - Generalized Levenshtein distance

$$d_{Lv}(S,T) = \frac{Lv(n,m)}{\max\{n,m\}}$$

where

$$Lv(i,j) = \begin{cases} \max(i,j) \\ Lv(i-1,j) + 1 \\ Lv(i,j-1) + 1 \\ Lv(i-1,j-1) + 1_{(S_i \neq T_j)} \end{cases}$$

if $\min(i, j) = 0$,

otherwise.

(c) (d)

More in detail, the *q*-grams based distances are calculated from *q*-grams based similarities with the formula:

```
d_x(S,T) = 1 - s_x(S,T).
```

REFERENCES (5)

- [1] F. Piccialli, Y. Yoshimura, P. Benedusi, C. Ratti, and S. Cuomo, Lessons learned from longitudinal modeling of mobile-equipped visitors in a complex museum. Neural Comp. and App., pp. 1-17, 2019
- [2] A. Ibba, R. Duin, and W.-J. Lee, A study on combining sets of differently measured dissimilarities. ICPR'10, pp. 3360-3363, 2010

COMPARISON (4)

An ordered F-measure heatmap representing the comparison among all the experimented clustering methodologies.

