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INTRODUCTION (1)
In our research we studied visitors’ behaviours inside one of the most
important museum in Italy, the National Archaeological Museum of
Naples, through a deployed IoT framework. It is composed by smart
sensor boards with Bluetooth and Wi-Fi capabilities. The IoT system
is able to track a visitor path by collecting his position and the related
time-of-stay inside the museum rooms [1]. Our dataset relies on about
19 000 unique users behavioural data composed by two features: (i) the
visiting Path (non-numerical data) and (ii) the Time spent (numerical
data).
Classifying unstructured and unlabelled data is a key challenge dealing
with three main research tasks:

• the study and selection of the appropriate similarity and distance
functions,

• the selection of the number of clusters in which partitioning the
data,

• the choice of the most suitable algorithm to achieve an accurate
data clustering.

SIMILARITIES AND DISTANCE FUNCTIONS (3)
(a) - Cosine similarity

scos(S, T ; q) =
v(S; q) · v(T ; q)

‖v(S; q)‖2 ‖v(T ; q)‖2

(b) - Jaccard similarity

sJac(S, T ; q) =
|Q(S; q) ∩Q(T ; q)|
|Q(S; q) ∪Q(T ; q)|

(c) - Longest Common Substring

dLCS(S, T ) =
LCS(n,m)

n+m
where

LCS(i, j) =


max(i, j) if min(i, j) = 0,

LCS(i− 1, j − 1) if S(i) = T (j),

1 + min {LCS(i− 1, j), LCS(i, j − 1)} otherwise

(d) - Generalized Levenshtein distance

dLv(S, T ) =
Lv(n,m)

max{n,m}
where

Lv(i, j) =


max(i, j) if min(i, j) = 0,

min


Lv(i− 1, j) + 1

Lv(i, j − 1) + 1

Lv(i− 1, j − 1) + 1(Si 6=Tj)

otherwise.

(a) (b)

(c) (d)

More in detail, the q-grams based distances
are calculated from q-grams based similari-
ties with the formula:

dx(S, T ) = 1− sx(S, T ).

COMPARISON (4)
An ordered F-measure heatmap representing the comparison among all the experimented
clustering methodologies.

THEORY (2)
The Clustering algorithms we considered
are:

• Hierarchical Clustering

• K-Medoids (PAM)

A similarity function is a tool that gives the
strength of the relationship between two or
more data items.
To deal with the non-numerical Path fea-
ture of our dataset, that can be treated as a
string, we have analyzed four strings simi-
larity functions. A string can be defined as
sequence of finite characters from a finite al-
phabet. A q-gram is a string with q consecu-
tive characters. The q-grams from a string S
are realized by collecting in sequences q char-
acters from S and saving the appearing q-
grams. To deal with the numerical Time fea-
ture we have pre-computed the distance ma-
trix by using the well-known Euclidean dis-
tance and then merged with the other strings’
distances with the formula defined as fol-
lows:

Dsum =
K∑
i=1

ωiD
(i)

where D(i) is a single distance matrix, K is
the total number of distances that we want to
merge and ωi is the inverse of the maximum
element of the i-th distance matrix D(i). It’s
shown that, to improve the performance of a
classification, it is better to combine multiple
distances than to use a single distance matrix
[2].
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