
GRIT
Consistent distributed transactions

This solution solves the problem of distributed transactions over multiple
services. It makes use of a global transaction manager (GTM) and a local
one (DBTM), for each database instance. Each manager has then a log,
in which it stores the commit sequence.

Here they are explained the three phases responsible for maintining
the consistency:

This solution guarantees consistent state locality with dynamic service
discovery. It provides a mechanism to maintain session data shared
among services. Every time a producer service needs to start an operation
it checks if a session is already associated to it. In negative case,
it creates a new session, being the owner. Only process owner can modify
the session, which is protected by a locking system. The picture
explains how the services can be discovered:
- producer side (R.1-R.4)
- consumer side (S.1-S.3)

In this research, we focused on defining the main features of microservices,
exploring possible solutions in the market. However, we discovered
that most of them are custom solutions implemented by the developer.
However, we believe that modern stream processors are really promising
solutions. They provide distributed state management with automatic
service scalability. Even if the technology is not mature enough to cover all
the functionalities of stateful microservices (transactions, global state view),
we believe that the research will move towards that result. Apache Flink,
and other similar solutions, may be the tool that integrate completely all the
characteristics of stateful microservices. The goal will be to have all those
features by default in one or multiple tools.

Routing for stateful microservices

Road Ahead

Stream processors for
stateful microservices

Modern stream processors as Apache Flink have the capability to
maintain a consistent distributed state. Each service can now hold
a local state.

However, Flink, specifically, does not provide an efficient way to query
the global state of the system. Moreover, it presents some downside in
the flexibility of the business logic implementation.

Service 1
Service 2

Service 3

Service 4

Presentation layer

Business layer

Persistence layer

Monolith to Microservices

State of the art in Stateful Microservices
Danish AMJAD, Edoardo CONTE

Stateful Microservices

1. Fault-tolerance 2. Scaling out

3. Transactions 4. State locality
5. Global state view 6. Loose coupling
7. Debugging and
Auditing

8. Dynamic
Reconfiguration

Each microservice that operates over a state is called a
stateful microservice.

In their deployment, they need to fulfill specific requirements:
Specific
R
equirem

ents

Orchestrator
High coupling.
Orchestrator overloading.

Easy flow management.
Easy debug.

Coreography
Low control on flow of
execution.
Hard to debug.
Asynchronous processing.
Distributed control.

Architectures


