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The ETL Process

• Extract-Transform-Load (ETL)

• The most underestimated process in DW development

• The most time-consuming process in DW development

 Up to 70% of the development time is spent on ETL!

• Extract

 Extract relevant data (from different kinds of sources)

• Transform

 Transform data to DW format

 Build DW keys, etc. 

 Cleansing of data

• Load

 Load data into DW (time consuming)
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pygrametl’s history

• We started the development of pygrametl in early 2009

• In a collaboration with industrial partners, we were using an existing GUI-based

ETL tool on a real-life data set to be loaded into a snowflake schema

• Required a lot of clicking and tedious work!

• In an earlier project, we could not find an ETL tool that fitted with the 

requirements and source data. Instead we wrote the ETL flow in Python code, 

but not in a reusable, general way

• We thought that there had to be an easier way 
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GUI-based ETL flow
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Motivation

• The Extract-Transform-Load (ETL) process is a crucial part for a data 

warehouse (DW) project

• Many commercial and open source ETL tools exist

• The dominating tools use graphical user interfaces (GUIs)

 Pros: Easy overview, understood by non-experts, easy to use (?)

 Cons: A lot of drawing/clicking, missing constructs, inefficient (?)

• GUIs do not automatically lead to high(er) productivity

 A company experienced similar productivity with coding ETL in C

• Trained specialists use text efficiently

• ETL developers are (in our experience) trained specialists
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Motivation – cont.

• We wish to challenge the idea that GUIs are always best for ETL

• For some ETL projects, a code-based solution is the right choice

 “Non-standard” scenarios when …

 fine-grained control is needed

 required functionality not available in existing ETL tool

 doing experimentation

 Prototyping

 Teams with limited resources

• Redundancy if each ETL program is coded from scratch

• A framework with common functionality is needed

• pygrametl

 a Python-based framework for ETL programming
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Why Python?

• Designed to support programmer productivity

 Less typing – a Python program is often 2-10X shorter than a similar Java program

• Good connectivity

• Runs on many platforms (also .NET and Java)

• “Batteries included” – comprehensive standard libraries

• Object-oriented, but also support for functional programming

• Dynamically and strongly typed

• Duck typing
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Rows in pygrametl

• We need to be able to handle rows. We just use Python’s dict type:
{‘greeting’:’Hello World’, ‘somevalue’:42,  ‘status’:’ok’}

{‘greeting’:’Hi’,          ‘somevalue’:3.14}

{‘greeting’:’Bonjour’,     ‘somevalue’:’?’, ‘status’:’bad’}

• GUI-based toools can require that different rows entering a given ”step” have the 

same structure

• In pygrametl, we don’t require this. The only requirement is that the needed data 

is available in a given row

 Some of the needed data doesn’t even have to be there if we can compute it on-demand

 Data types can also differ, but should be of a ”usable” type

 If this does not hold, an exception is raised at runtime
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Example
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Dimension support

• The general idea is to create one Dimension instance for each dimension in 

the DW and then operate on that instance: dimobject.insert(row)
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Dimension

testdim = Dimension(

name=“test”, key=“testid”,

attributes=[“testname”, “testauthor”],

lookupatts=[“testname”],

defaultidvalue=-1)

Further, we could have set

• idfinder=somefunction

to find key values on-demand when inserting a new member

• rowexpander=anotherfunction

to expand rows on-demand
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Required

Optional
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Dimension’s methods

• lookup(row, namemapping={})

Uses the lookup attributes and returns the key value

• getbykey(keyvalue)

Uses the key value and returns the full row

• getbyvals(row, namemapping={})

Uses a subset of the attributes and returns the full row(s)

• insert(row, namemapping={})

Inserts the row (calculates the key value if it is missing)

• ensure(row, namemapping={})

Uses lookup. If no result is found, insert is used after the optional 

rowexpander has been applied

• update(row, namemapping={})

Updates the row with the given key value to the given values
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CachedDimension

• Like a Dimension but with caching

testdim = Dimension(

name=“test”, key=“testid”,

attributes=[“testname”, “testauthor”],

lookupatts=[“testname”],

defaultidvalue=-1

cachesize=500,

prefill=True

cachefullrows=True )

15eBISS 2017



SlowlyChangingDimension

• Supports Slowly Changing Dimensions (type 2 (and 1))

pagedim = SCDimension(name=“page”, key=“pageid”,

attributes=[“url”, “size”, …],

lookupatts=[“url”],

fromatt=“validfrom”,

fromfinder=pygrametl.datereader(“lastmoddate”),

toatt=“validto”, versionatt=“version”)

• We could also have given a list of “type 1 attributes”, set a tofinder, 

and configured the caching

• Methods like Dimension plus 

scdensure(row, namemapping={})

that is similar to ensure but detects changes and creates new versions 

if needed
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SnowflakedDimension
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• For filling a snowflaked dimension represented by several tables

• Enough to use one method call on a single object made from other Dimension

objects

pagesf = SnowflakedDimension \

([  (pagedim, [serverversiondim, domaindim]),

(serverversiondim, serverdim),

(domaindim, topleveldim)

])

• We can then use a single call of pagesf.ensure(…) to handle a full 

lookup/insertion into the snowflaked dimension

• Likewise for insert, scdensure, etc.
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Fact table support

• FactTable – a basic representation

 insert(row, namemapping={})

 lookup(row, namemapping={})

 ensure(row, namemapping={})

• BatchFactTable

 Like FactTable, but inserts in batches.

• BulkFactTable

 Only insert(row, namemapping={})

 Does bulk loading by calling a user-provided function

facttbl = BulkFactTable(name=“testresults”,

keyrefs=[“pageid”, “testid”, “dateid”],

measures=[“errors”], bulksize=5000000,

bulkloader=mybulkfunction)
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Putting it all together

• The ETL program for our example:
[Declarations of Dimensions etc.]

…

def main():

for row in inputdata:

extractdomaininfo(row)

extractserverinfo(row)

row[“size”] = pygrametl.getint(row[“size”])

row[“pageid”] = pagesf.scdensure(row)

row[“dateid”] = datedim.ensure(row)

row[“testid”] = testdim.lookup(row)

facttbl.insert(row)

connection.commit()
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Flow support

• A good aspect of GUI-based ETL programming is that it is easy to keep 

different tasks separated

• pygrametl borrows this idea and supports Steps (with encapsulated 

functionality) and flows between them

• A Step can have a following Step

• The basic class Step offers (among other) the methods

 defaultworker(row)

 _redirect(row, target)

 _inject(row, target=None)

• pygrametl has some predefined Steps:

MappingStep, ValueMappingStep, ConditionalStep, …
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Flow support – experiences

• It turns out that Steps are not used often

• Nearly no questions/comments received about them

• Do users not want to be limited to express their ETL process in terms of steps 

and connections when they decide to use code for the ETL process?
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Evaluation

• We implemented ETL solutions for the example in pygrametl and Pentaho Data 

Integration (PDI)

 PDI is a leading open source GUI-based ETL tool

 Ideally, commercial tools should also have been used but commercial licenses often forbid 

publication of performance results

• Difficult to make a complete comparison…

 We have experience with PDI but we wrote pygrametl

 A full-scale test would require teams with fully trained developers

• We evaluated development time 

 each tool was used twice – in the first use, we had to find a strategy, in the latter use we 

only found the interaction time

• … and performance

 on generated data with 100 million facts
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Comparison

pygrametl

• 142 lines (incl. whitespace 

and comments),

56 statements

• 1st use: 1 hour

• 2nd use: 24 minutes

PDI

• 19 boxes and 19 arrows

• 1st use: 2 hours

• 2nd use: 28 minutes
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Performance test

• [Experiment from DOLAP’09 but on new hardware and newer software versions]

• Uses the running example
 2,000 domains each with 100 pages and 5 tests

  One considered month gives 1 million facts 

 We get ~100,000 new page versions per month after the 1st month

• VirtualBox with 3 virtual CPUs; host has 2.70GHz i7 with 4 cores and 
hyperthreading

• VirtualBox with 16GB RAM; host has 32GB

• Host has SSD disk

• Linux as guest OS; host runs Windows 10

• Python 3.6, OpenJDK 8, PostgreSQL 9.4

• pygrametl 2.5, PDI 7.1

• Both pygrametl and PDI were allowed to cache all dimension data
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Performance
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Conclusion and future work

• We challenge the conviction that ETL is always best done by means 

of a GUI

• We propose to let ETL developers do ETL programming by writing 

code

• To make this easy, we provide pygrametl

 a Python-based framework for ETL programming

• Some persons prefer a graphical overview of the ETL process

 The optimal solution includes both a GUI and code

 It would be interesting to make a GUI for creating and connecting steps

 Updates in code should be visible in GUI and vice versa

 “Reverse engineering” & “roundtrip engineering”

• Next, we will consider a simple and efficient way to create parallel 

ETL programs in pygrametl
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Introduction

• Parallelization is often needed to handle the data volumes

 Task parallelism

 Data parallelism

• Parallelization makes the development more complex

• We present general functionality for performing parallel ETL

• Parallelization should fit with pygrametl’s simplicity

• It should be easy to turn a non-parallel program into a parallel one

• With little more CPU time, much less wall-clock time is used
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Extract

• It is often time-consuming to extract data from sources

• Do it in another process/thread

 Do also transformations in the other process in this example

• downloadlog = CSVSource(open(…))

• testresuls = CSVSource(open(…))

• joineddata = MergeJoiningSource(downloadlog, ‘localfile’,

testresults, ‘localfile’)

• transformeddata = TransformingSource(joineddata, sizetoint,

extractdomaininfo, extractserverinfo)

• inputdata = ProcessSource(transformeddata)
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Example

A type-2 Slowly Changing

Dimension with much data

[Declarations not shown]

for row in inputdata:

row[‘testid’] = testdim.lookup(row)

row[‘dateid’] = datedim.ensure(row)

row[‘pageid’] = pagedim.scdensure(row)

facttbl.insert(row)
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Decoupled objects

• Much time is spent on dimension and fact table operations

• Do these in parallel with other things (task parallelism)

• Push them to other processes/threads

• Decoupled spawns a new process for a given object o and lets o execute in 

the new process such that o is decoupled

• In the parent process, a Decoupled acts as proxy. 

 Can return a FutureResult when a method on o is invoked

• pagedim =

SCDimension(name=‘page’, key=…)

DecoupledDimension(

)
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Decoupled objects
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Consuming decoupled objects

• We now get a FutureResult from pagedim

 Can’t be inserted into the fact table – we need the real result

• We could ask for the real result, but no parallelism then…

• Instead, we also decouple facttbl and let it consume pagedim

 The FutureResults created by pagedim are then automatically replaced in 

the new process for facttbl

 All processes can now work in parallel

for row in inputdata:

row[‘testid’] = testdim.lookup(row)

row[‘dateid’] = datedim.ensure(row)

row[‘pageid’] = pagedim.scdensure(row)

facttbl.insert(row)
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Consuming decoupled objects
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Partitioning

• Processing the page dimension is a bottleneck in our example

• We can create several decoupled objects for the page dimension

 And make code to partition the data between them

 Not very flexible – what if we add/remove decoupled objects?

• DimensionPartitioner remedies this

 Partitions between any number of Dimension objects

 Data parallelism when decoupled objects are used

 Looks like a Dimension no changes needed in the main code

 A method invocation is redirected to the right instance

 Based on hashing of business key or a user-definable partitioner

pagedim = DimensionPartitioner([pagedim1, pagedim2]),

partitioner = lambda row: hash(row[‘domain’]))
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Partitioning
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Parallel functions

• Often, time-consuming functions are used

• It should be easy to make a function run in parallel with other tasks

• We use annotations for this

def myfunc(*args):

# Some Python code here …

• Here, two new processes are spawned (instances=2)

• All calls of myfunc return immediately and the function instead executes in one

of the new processes

@splitpoint(instances=2)

37eBISS 2017



@splitpoint
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Parallel functions in flows

• Another way to use functions in parallel is a flow

• A flow F consists of a sequence of functions f1, f2, …, fn running in 

parallel in a number of processes

• F is callable such that F(x) corresponds to 

f1(x) followed by f2(x) followed by … followed by fn(x)

• flow = createflow(extractdomaininfo,

extractserverinfo, convertsize)

• Several functions can also be made to run in a shared process:
flow = createflow(extractdomaininfo,

(extractserverinfo, convertsize))
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Flows
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Combining flows and splitpoints

flow = createflow(…)

@splitpoint

def producedata():

for row in somesrc:

flow(row) #Insert row into the flow

def consumedata():

for row in flow: #Get the transformed data

# Do something

producedata()

consumedata()
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Implementation

• Use of threads can be really slow in CPython (the reference implementation)

 In our example, use of four threads is slower than use of a single thread!

• Instead, pygrametl uses multiprocessing where processes are launced

 This is better, but IPC is expensive

• pygrametl can also run on Jython (Python implemented in Java)

 Threading works well here and pygrametl then uses threads instead of processes
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Performance

• We use the running example as test bed

• pygrametl under Jython 2.5.2/Java 6

• PDI 3.2 
 [4.0 and 4.1 existed at the time of the experiment, but were slower than 3.2]

• PostgreSQL 8.4

• 2 x Quad core 1.86GHz Xeon CPUs, 16 GB RAM

• Compare the single-threaded ”pygrametl1” program to the multi-
threaded ”pygrametl2”
 2 DecoupledDimensions for the page dimension

 a DecoupledFactTable

 a separate process for extracting data and performing simple transformations

• … and compare to PDI with 1 and 2 connections
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Elapsed time
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CPU time
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Conclusion and future work

• Many different ways to add parallelism to an ETL program

 Task parallelism: Decoupled, @splitpoint, flows

 Data parallelism: Decoupled + Partitioner, @splitpoint(instances=…)

• Easy to add parallelism to a non-parallel ETL program

 But some parts of an ETL program may be blocking

• Use a little more CPU time to reduce the elapsed (wall-clock) time a lot

• Future work:

 Performance monitoring and hints

 Maturing the tool and adding features
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Experiences with pygrametl’s parallelism

• The classes and functions for parallelism accept optional parameters:

 batchsize: the amount of grouped method calls transferred between the processes

 queuesize: the maximum amount of waiting batches

• If not given, default values are used

• Challenge: The values can significantly affect the performance

• Values which are good on one machine are not necessarily good on another 

 Previous student project: Automatically find good values

• On Jython, a part of the explanation has to do with garbage collection
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Related work

• The commercially available ETL tools use parallelism

 Some do it simplisticly and start a thread for each step, others find groups/trees of steps to be
processed by one thread

 It is very different how different (graphically drawn) ETL definitions exploit parallelism and this
should still be considered carefully

 With the suggested approaches, the programmer has the full control of how and where to apply
parallelism

• MapReduce for ETL

 ETLMR (Liu, Thomsen, and Pedersen) is a modified version of pygrametl to be used with 
MapReduce

 PDI

• PyCSP (Bjørndal et al) for parallel functions by means of annotations

 A general framework for parallelism

 Requires explicit input/output channels
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A case study: FlexDanmark

• FlexDanmark organizes taxi trips for patients going to hospitals etc.

 Revenue:120 million USD/year

• To do this, they make their own routing based on detailed speed maps

• GPS data from ~5,000 vehicles; ~2 million coordinates delivered every night

• A Data Warehouse represents the (cleaned) GPS data

• The ETL procedure is implemented in Python

 transformations between different coordinate systems

 spatial matching to the closest weather station

 spatial matching to municipalities and zip code areas

 map matching to roads

 load of DW by means of pygrametl
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Case study: Code-generation

• Another DW at FlexDanmark holds data about payments for trips, taxi 

companies, customers, …

• Integrates data from different source systems delivered in CSV dumps

• Payment details (i.e., facts) about already processed trips can be updated

•  fact tables treated similarly to ”type 2 SCDs” with ValidFrom/ValidTo and 

Version#

• New sources and dimensions are sometimes added

• FlexDanmark has created a framework that creates Python code incl. 

pygrametl objects (and tables in the DW) based on metadata parameters

 A new data source can be added with 10-15 lines of code in ½ hour

a new dimension with 2 lines of code

 Parallelism, versioning, etc. immediately available
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Case-study: Lessons learned

• Programming gives a big freedom/many possibilities

• Complexity can grow

•  A big need for good documentation
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Case study: Why programmatic ETL

• Programming gives bigger flexibility

• Easy to reuse parts in different places

• Tried to implement map matching in commercial ETL GUI-based tool

 Hard to ”fit” into the frames

 Gave up and went for programmatic ETL in Python

 Existing libraries could easily be reused (and replaced with others)

• Commercial ETL tools are expensive

 Open-source GUI-based ETL tools considered, but after comparing coded and ”drawn” ETL 

flow examples, it was decided to go for code
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Other cases

• Often, we don’t know what users use pygrametl for…

• Some have told us what they use it for

• Domains include

 health

 advertising

 real estate

 public administration

 sales

• Sometimes job adds mention pygrametl knowledge as a requirement
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pygrametl as open source

• We published a paper about pygrametl in DOLAP’09 and put the pygrametl

source code on our homepage

 There were some downloads and comments but not too many

• Later, we moved the code to Google Code and got more attention

• When Google Code was taken out of service, we moved to GitHub and got

much more attention

 Currently 15 watchers, 85 stars, 16 forks

 pygrametl.org has ~30 unique visitors per day (most visitors Mon-Fri)
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Experiences with open sourcing pygrametl

• Avoid obstacles for the users

 Users want easy installation: pip install pygrametl

 When pygrametl was not on GitHub and PyPI, people created their own unofficial

projects/packages – outside our control

 Tell early what your software can/cannot do

• Make it clear how to get into contact with you

 Avoid too many possibilities

• Make documentation and guides

 We can see that our online Beginner’s Guide and examples are popular

 Remove old documentation

 We forgot some outdated HTML pages which continued to be on the top in Google’s results
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Experiences with open sourcing pygrametl

• Engage users when they ask for help

 How to reproduce the problem

 How to solve it (ask them to provide code if possible)

• Users also find performance bottlenecks – and good improvements

 For example ORDER BY vs. local sort in Python

• Some users are also willing to pay for development of a feature

 Check with you university if you are allowed to take the job

 Make a contract that specifies all the details incl. IPR, license, contributions back to the 

project, …

 Can you be sued if something goes wrong? Specify the maximum liability

• Users are often very quiet

 A good sign??? A bad sign???

 Use something like Google Analytics to see how many visitors you have (does not tell no. of 

downloads from PyPI etc.)
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Source code

• The source code and the shown example cases can be downloaded from

http://pygrametl.org 

• The source code is maintained by Søren Kejser Jensen, Ove Andersen, and 

Christian Thomsen

• Thanks to all code contributors!
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In the beginning…

• Plus  FactTable, BatchFactTable, and BulkFactTable
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Now

• But then we got new ideas/requests/needs… (Not a bad thing!)
 Dimension(object)

 CachedDimension(Dimension)

 SnowflakedDimension(object)

 SlowlyChangingDimension(Dimension) # Supports type 2(+1) changes

 TypeOneSlowlyChangingDimension(CachedDimension)

 FactTable(object)

 BatchFactTable(FactTable)

 _BaseBulkloadable(object)

 BulkFactTable(_BaseBulkloadable)

 BulkDimension(_BaseBulkloadable)

 CachedBulkDimension(_BaseBulkloadable, CachedDimension)

 SubprocessFactTable(object)

 DecoupledDimension(Decoupled)  # Looks like a Dimension

 DecoupledFactTable(Decoupled)   # Looks like a FactTable

 BasePartitioner

 DimensionPartitioner(BasePartitioner)  #Looks like a Dimension

 FactTablePartitioner(BasePartitioner)  # Looks like a FactTable

61eBISS 2017



Why so many classes?

• New ideas often resulted in new classes

 with the same interface. 

 (Sometimes we used inconsistent argument names )

 We think/hope that they are easy to use

• We did not break existing functionality

• On the other hand…

 It is not intuitive that you should not use Dimension, but rather CachedDimension

– who wouldn’t want caching?

 Sometimes we implement the same thing in different variations –

SlowlyChangingDimension provides its own caching

 It would be nice to always have the possibility of using bulkloads,  caching, and 

parallelism
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What should we do in the future

• Version 2.x should remain compatible with previous versions

• Version 3.0 could introduce major API changes if we decide to do so

• Fewer ”table classes” with the same or more functionality

 Caching, bulkloading, and parallelism could always be possible

 Only one class for SCDs

 …
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MapReduce: Origin and purpose

• Introduced by Google in 2004

• Makes distributed computing on clusters easy

• Highly scalable: Handles TBs of data on clusters of 1000s of 

machines (scales out)

• The user only has to specify two functions

 An abstraction: The two functions deal with key/value sets.

• The system can then take care of partitioning, scheduling, failures, 

etc. (all the tedious work)

 The user can focus on the important computations

• MapReduce is batch processing system. Brute force!

 To be used on large amounts of data
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Programming Model

• Takes a set of key/value pairs as input

• Produces another set of key/value pairs as output

• Keys and values can be primitives or complex types

• The user provides two functions: map and reduce

• map: (k1, v1)  list(k2, v2)

 Takes an input pair and produces a set of intermediate key/value pairs. 

MapReduce groups all intermediate pairs with the same key and gives them to 

reduce

• reduce: (k2, list(v2))  list(k3, v3)  (Hadoop)

list(v2)      (Google)

 Takes an intermediate key and the set of all values for that key. Merges the 

values to form a smaller set (typically empty or with a single value)
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Example: WordCount

map(String key, String value):

// key: document name; value: doc. contents

foreach word in value:

EmitIntermediate(word, 1)

reduce(String key, Iterator<int> values):

// key: a word; values: list of counts

int result = 0;

foreach v in values:

result += v;

Emit(key, result);
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How does it work?

• The map invocations are distributed across many machines such that many 

map invocations run concurrently

 Often many thousands of task to assign to hundreds or thousands of nodes

 The input is automatically partitioned into logical splits which can be processed in 

parallel

 The input data is stored in a distributed file system. The MapReduce runtime systems 

tries to schedule the map task to the node where its data is located. This is called 

data locality.

• The intermediate key/value pairs (map outputs) are partitioned using a 

deterministic partitioning function on the key:

 By default: hash(key)

• The reduce invocations can then also be distributed across many machines

 but not until all map tasks have finished
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Conceptual view
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WordCount – the actual code for Hadoop
1 package org.myorg;

2         

3 import java.io.IOException;

4 import java.util.*;

5 

6 import org.apache.hadoop.fs.Path;

7 import org.apache.hadoop.conf.*;

8 import org.apache.hadoop.io.*;

9 import org.apache.hadoop.mapreduce.*;

10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

11 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

13 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

14         

15 public class WordCount {

16         

17  public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

18     private final static IntWritable one = new IntWritable(1);

19     private Text word = new Text();

20         

21     public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

22         String line = value.toString();

23         StringTokenizer tokenizer = new StringTokenizer(line);

24         while (tokenizer.hasMoreTokens()) {

25             word.set(tokenizer.nextToken());

26             context.write(word, one);

27         }

28     }

29  } 

30         

31  public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

32 

33     public void reduce(Text key, Iterable<IntWritable> values, Context context) 

34       throws IOException, InterruptedException {

35         int sum = 0;

36         for (IntWritable val : values) {

37             sum += val.get();

38         }

39         context.write(key, new IntWritable(sum));

40     }

41  }

42         

43  public static void main(String[] args) throws Exception {

44     Configuration conf = new Configuration();

45         

46         Job job = new Job(conf, "wordcount");

47     

48     job.setOutputKeyClass(Text.class);

49     job.setOutputValueClass(IntWritable.class);

50         

51     job.setMapperClass(Map.class);

52     job.setReducerClass(Reduce.class);

53         

54     job.setInputFormatClass(TextInputFormat.class);

55     job.setOutputFormatClass(TextOutputFormat.class);

56         

57     FileInputFormat.addInputPath(job, new Path(args[0]));

58     FileOutputFormat.setOutputPath(job, new Path(args[1]));

59         

60     job.waitForCompletion(true);

61  }

62         

63 }

Code from apache.org
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ETL on MapReduce

• An ever-increasing demand for ETL tools to process very large amounts of data 

efficiently

• Parallelization is a key technology

• MapReduce offers high flexibility and scalability and is interesting to apply

• But MapReduce is a generic programming model and has no native support of 

ETL-specific constructs

 Star, snowflake schemas, slowly changing dimensions

• Implementing a parallel ETL program on MapReduce complex, costly, error-

prone, and leads to low programmer productivity
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ETLMR

• As a remedy ETLMR is a dimensional ETL framework for MapReduce

 Direct support for high-level ETL constructs

• ETLMR leverages the functionality of MapReduce, but hides the complexity

• The user only specifies transformations and declarations of sources and targets

 Only few lines are needed

• Based on pygrametl but some parts extended or modified to support 

MapReduce
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ETLMR

• An ETL flow consists of dimension processing followed by fact processing

 Two sequential MapReduce jobs

 In a job, a number of tasks process dimension/fact data in parallel on many nodes
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How to use ETLMR

• Declare sources and targets in config.py

from odottables import *   # Different dimension processing schemes supported

fileurls = [‘dfs://…/TestResults0.csv’, dfs://…/TestResults1.csv, …]

datedim = CachedDimension(…)                     # as in pygrametl

pagedim = SlowlyChangingDimension(…) 

pagesf = SnowflakedDimension(…)
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How to use ETLMR

• Define also source attributes to use for each dimension and transformations to 

apply (implemented in Python)

dims = {

pagedim:{‘srcfields’:(‘url’, ‘serverversion’, ‘domain’, ‘size’, ‘lastmoddate’),

‘rowhandlers’:(UDF_extractdomain, UDF_extractserver)},

domaindim:{srcfields’:(‘url’), ‘rowhandlers’:(UDF_extractdomain)},

…

}
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Dimension processing: ODOT

• One Dimension, One Task

• Map

 Projection of attributes

 (dimension name, attributes)

• Reduce

 One reducer processes data for one dimension

 User-defined transformations

 Key generation

 Filling/updating the dimension table
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Dimension processing: ODAT

• One Dimension, All Tasks

• Map

 Projection of attributes

 (rownumber, [dimname1:{…}, dimname2:{… }, …])

• Reduce

 Data distributed in a round-robin fashion

 One reducer processes data for all dimensions

 One dimension is processed by all reducers

 Inconsistencies and duplicated rows can occur

 Fixed in a final step
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Dimension processing: Snowflaked

• For snowflaked dimensions, an order can be given

• order = [(topdomaindim, serverdim),

(domaindim, serverversiondim),

(pagedim, datedim, testdim) ]

• Results in three ODOT jobs
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Dimension processing: Offline

• Dimension data is processed and stored locally on the nodes

• DW only updated when explicitly requested

• Processing schemes: ODOT and a combination of ODAT and ODAT (”hybrid”)

• In the hybrid, a data-intensive dimension (such as pagedim) can be partitioned

based on business key (url) and processed by all tasks (ODAT-like)

• The remaining dimensions use ODOT processing

eBISS 2017 79



Fact processing

• In config.py we declare:

 fact tables

 dimensions to do lookups in

 transformations to apply

• Fact partitions processed in parallel
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Deployment

• ETLMR uses the Python-based Disco platform

• For our example (with a snowflaked page dimension), ETLMR requires 12 

statements

• The most widely used MapReduce implementation is Apache Hadoop

• In later work – CloudETL – we consider ETL for Hadoop (specifically Hive)
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Agenda

• Introduction to pygrametl – a framework for programmatic ETL

• Explicit parallelism in pygrametl

• A case-study

• Open-sourcing pygrametl

• ETLMR

• CloudETL

• MAIME – programmatic changes/repairs of SSIS Data Flows
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Motivation

• Much attention has been given to MapReduce for parallel handling of massive 

data sets in the cloud

• Hive is a popular system for data warehouses (DWs) on Hadoop MapReduce

 Instead of MapReduce programs in Java, the user uses the SQL-like HiveQL

• The ”Extract-Transform-Load” (ETL) process loads data into a data warehouse

• Pig is often used for preprocessing of data

• It is hard to do dimensional ETL processing in Hive/Pig

 For batch processing, not individual look-ups or inserts

 No UPDATEs  ”slowly changing dimensions” (SCDs) are hard to use, but they are very

common in traditional (i.e., non-cloud) DWs
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CloudETL

• CloudETL is a solution that makes dimensional ETL on Hadoop easy

• The target is Hive – we’re not replacing Hive

 CloudETL for dimensional ETL, Hive for analysis

 We write data directly to Hive’s directories

• The user defines the ETL flow by high-level constructs;

the system handles the parallelization

•  high programmer productivity, fast performance, and good scalability

• Two sequential steps in a CloudETL workflow:

dimension processing followed by fact processing
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Dimension processing of SCDs

• For ”type 2 SCDs” (where we add row versions), the main challenge is how to 

handle the special SCD attributes

 valid from, valid to, version nr.

• When doing incremental loading, we may need to update existing dimension 

members

• Collect data from incremental data and existing data

• Do transformations in mappers (incremental data only)

 Emit <table name, business key, change order> as key

and the rest as value

• Partition on the <table name, business key> 

• Perform the updates in reducers

 The data is already sorted by the MapReduce framework
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Example
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Dimension processing of SCDs

• For ”type 1” SCDs, we overwrite updated values

• A value may be overwritten many times

• To avoid writing unnecessary map output, we can modify the mapper to hold 

the current state of each seen dimension member in memory

• When the mapper is done with its split, it only outputs the current values and 

the reducer will do any necesary updates based on these
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Processing of Big Dimensions

• Dimension tables are typically small compared to fact tables

• When a dimension table is big, the shuffling of data from mappers to reducers

is not efficient

• In that case, we can use a map-only job where we exploit data locality in the 

distributed file system HDFS

• Co-locate existing and new data for the same parts
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Fact processing

• Read and transform source data

• Retrieve surrogate key values from referenced dimensions

 Hive does not support fast look-ups

 There is usually much more fact data than dimension data

• During dimension processing, CloudETL creates look-up indices which map

from business key values (and possibly validity dates) to surrogate key values
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Fact processing, cont.

• CloudETL runs a map-only job to process fact data

Mapper

• Read relevant look-up indices into memory

• For each row in the data to load:

 Perform transformations

 Look-up surrogate key values in the look-up indices

 Write out fact row

• The mappers can work in parallel on different parts of the data

• This works fine when the indices can be held in the main memory
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Fact processing, cont.

• When a dimension table is too big to have its look-up index in the main

memory, we suggest two alternatives

• 1) A hybrid solution where the new fact data is joined with the existing (big) 

dimension data by Hive. After that, the look-up indices for the smaller 

dimensions can be used

• 2) Partition the look-up index and require the source data to be partitioned in 

the same way

 Co-locate the index partitions with the data partitions
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Code for fact processing

eBISS 2017 92



Experiments

• Tested on a private cluster

• 1 node used as NameNode and JobTracker

 two quad-core Xeon E5606 2.13 GHz CPUs, 20GB RAM

• 8 nodes used as DataNodes and TaskTrackers

 two dual-core Intel Q9400 2.66 GHz CPUs, 3GB RAM

• Tested with generated data set for a schema with three dimension tables and 

one fact table

• We compare with Hive and our previous work ETLMR
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Star schema, no SCD
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CloudETL summary

• While Pig and Hive are great tools, they are not ideal for ETL processing

• We have proposed CloudETL which is a tool where the user can program 

dimensional ETL flows to be run on Hadoop MapReduce

• CloudETL requires little programming and is efficient

• Future directions include more transformations, investigation of other backends

(e.g., Spark), and making CloudETL even easier to use
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Agenda

• Introduction to pygrametl – a framework for programmatic ETL

• Explicit parallelism in pygrametl

• A case-study

• Open-sourcing pygrametl

• ETLMR

• CloudETL

• MAIME – programmatic changes/repairs of SSIS Data Flows
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Motivation

• A Data Warehouse (DW) contains data from a number of External Data 

Sources (EDSs)

• To populate a DW, an Extract-Transform-Load (ETL) process is used

• It is well-known that it is very time-consuming to construct the ETL process
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Motivation

• Maintaining ETL processes after deployment, however, also takes much time

• Real examples

 A pension and insurance company applies weekly changes to its software systems. The BI 

team then has to update the ETL processes

 A facility management company has more than 10,000 ETL processes to execute daily. 

When there is a change in the source systems, the BI team has to find and fix the broken 

ones

 The ETL team at an online gaming-engine vendor has to deal with daily changes in the 

format of data from web services

• Maintenance of ETL processes requires manual work and is time-consuming 

and error-prone
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MAIME

• To remedy these problems, we propose the tool MAIME which can

 detect schema changes in EDSs

 and (semi-)automatically repair the affected ETL processes

• MAIME works with SQL Server Integration Services (SSIS) and SQL Server

 Among the top-3 most used tools (Gartner)

 SSIS offers an API which makes it possible to change ETL processes programmatically 

 The current prototype supports Aggregate, Conditional Split, Data Conversion, Derived 

Column, Lookup, Sort, and Union All as well as OLE DB Source and OLE DB Destination
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Overview of MAIME
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Overview of MAIME

• The Change Manager captures metadata from the EDSs

• The current snapshot is compared to the previous snapshot and a list of 

changes is produced

• The Maintenance Manager loads the SSIS Data Flow tasks and creates a 

graph model as an abstraction

 Makes it easy to represent dependencies between columns

• Based on the identified changes in the EDSs, the graph model is updated

• When we make a change in the graph model, corresponding changes are

applied to the SSIS Data Flow
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The graph model

• An acyclic property graph G = (V, E) where a vertex v∈ V represents a 

transformation and an edge (v1, v2, columns) represents that columns are 

transferred from v1 to v2

 The transferred columns are ”put on” the edges. This is advantageous for transformations 

with multiple outgoing edges where each edge can transfer a different set of columns

• Our vertices have multiple properties

• A property is a key-value pair. We use the notation v.property

• The specific properties depend on the represented transformation type, but all 

have name, type, and dependencies

 except OLE DB Destination which has no dependencies
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The graph model – dependencies

• dependencies shows how columns depend on each other

 If an Aggregate transformation computes c’ as the average of c, we have that c’ depends on 

c

• Formally, dependencies is a mapping from an output column o to a set of input 

columns {c1, …, cn}

 We say that o is dependent on {c1, …, cn} and denote this

o {c1, …, cn}

• We also have trivial dependencies where c depends on c
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Examples – dependencies

• Aggregate: For each output column o computed as AGG(i), o depends on i 

• Derived Column: Each derived column o depends on the set of columns used

in the expression defining o. Trivial dependencies in addition

• Lookup: Each output column o depends on the set of input columns used in 

the lookup (i.e., the equi-join). Trivial dependencies in addition

• Conditional Split: Only trivial dependencies
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Other specific properties
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Policies

• For a change type in the EDS and a vertex type, a policy defines what to do

• For example p(Deletion, Aggregate) = Propagate

• Propagate means repair vertices of the given type if a change of the given type 

renders them invalid

• Block means that a vertex of the given type (or any of its descendants) will not

be repaired

 Instead, it can optionally mean ”Don’t repair anything if the flow contains a vertex of the 

given type and the given change type occurred”

• Prompt means ”Ask the user”
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Policies
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Example
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Example

• Now assume the following changes:

 Age is renamed to RenamedAge in the Person table

 TotalAmount is deleted from the Sale table

• MAIME will traverse the graph to detect problems and apply fixes (i.e., 

propagate changes)

 Renames are easily applied everywhere

 For deletions, dependencies are updated for each vertex

• From the dependencies, MAIME sees that AmountTimes10 in Derived

Column depends on something that does not exist anymore

•  The derivation is removed (but the transformation stays)
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Example

• It is also detected that one of the edges from the Conditional Split no longer can

be taken

 The edge is removed

 Its destination is also removed since it has no in-coming edges anymore
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Result
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Comparison to manual approach

1st attempt 2nd attempt 3rd attempt

Manual MAIME Manual MAIME Manual MAIME

Time (seconds) 187 4 159 4 59 4

Keystrokes 23 0 15 0 12 0

Mouse clicks 88 4 85 4 38 4
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Conclusion

• Maintenance of ETL processes after deployment is time-consuming

• We presented MAIME which detects schema changes and then identifies

affected places in the ETL processes

• The ETL processes can be repaired automatically – sometimes by removing

transformations and edges

• Positive feedback from BI consultancy companies

• In the future, the destination database could be modified, e.g, when a column 

has been added to the source or changed its type

114eBISS 2017



Related work

• Hecataeus by G. Papastefanatos, P. Vassiliadis, 

A. Simitsis, and Yannis Vassiliou

 Abstracts ETL processes as SQL queries, represented by graphs with subgraphs

 Detects evolution events and proposes changes to the ETL processes based on policies

 Propagate (readjust graph), Block (keep old semantics), Prompt

 Policies can be specified for each vertex/edge

• E-ETL by A. Wojciechowski

 Model ETL processes through SQL queries

 Policies: Propagate, Block, Prompt

 Different ways to handle changes: Stanadard Rules, Defined Rules, Alternative Scenarios
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Agenda

• Introduction to pygrametl – a framework for programmatic ETL

• Explicit parallelism in pygrametl

• A case-study

• Open-sourcing pygrametl

• ETLMR

• CloudETL

• MAIME – programmatic changes/repairs of SSIS Data Flows
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