

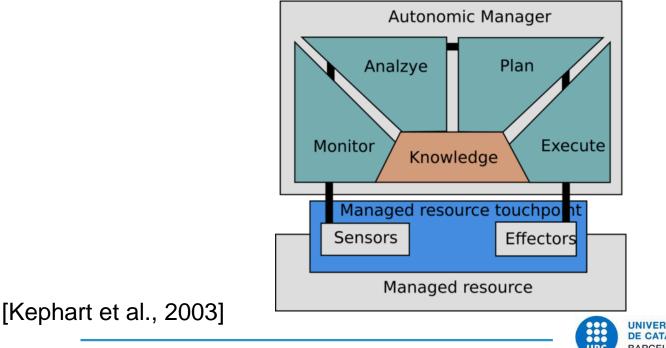
Self-Optimizing Big Data Processing IT4BI-DC Doctoral Colloquium

Sergi Nadal

Supervised by Alberto Abelló, Oscar Romero and Stijn Vansummeren

Also in collaboration with Panos Vassiliadis

06/07/2017



Autonomic Computing

• IBM's vision of autonomic computing

"a computing environment with the ability to manage itself and dinamically adapt to change in accordance with business policies and objectives"

• The MAPE-K adaptation control loop

On the need of autonomic Big Data computing

- Big Data ecosystems store and process
 - − Stationary data → batch (e.g., transactional)
 - − Situational data → real-time (e.g., social networks)
- Situational data is highly heterogeneous and dynamic by nature
 - Changes in the arrival rate, schema, data distribution, ...
 - Direct impact on the system's performance
- Self-adaptation is highly needed
 - Self-healing, self-configuration, self-protection, ...
 - We focus on self-optimization

[Löser et al., 2009]

Metadata – the cornerstone for self-optimization

- A Big Data architecture with the *Knowledge* component, capable of answering:
 - What are my data sources?
 - Which schema are they providing?
 - How frequent data are arriving?
 - How are my data changing? (...)
- Make the architecture aware of "what's going on"
 - Semantic awareness
 - Machine-readable metadata to provide (partial) automation of data definition and exploitation

Today's overview

- A software reference architecture for semanticaware Big Data systems
- Self-optimization techniques
 - An integration-oriented ontology to govern evolution
 - Intermediate results materialization selection for data-intensive flows
 - A management system for distributed CER
- Conclusions & publication plan
- References

A SOFTWARE REFERENCE ARCHITECTURE FOR SEMANTIC-AWARE BIG DATA SYSTEMS

Requirements for a semantic-aware Big Data architecture

• 5 dimensions, 15 functional requirements

A SLR on Big Data architectures

Custom Architectures		Volume		Velocity		Variety			Variability			Veracity				
		R1.1	R1.2	R1.3	R2.1	R2.2	R3.1	R3.2	R3.3	R4.1	R4.2	R4.3	R5.1	R5.2	R5.3	R5.4
A1	CQELS (Phuoc et al., 2012)	X	1	X	1	1	X	X	1	1	X	1	X	X	X	X
A2 AllJoyn Lambda (Villari et al., 2014)		1	1	✓	1	1	1	1	X	X	X	X	X	X	X	X
A3	CloudMan (Qanbari et al., 2014)	1	1	1	X	X	1	1	×	X	X	X	X	×	X	X
A4	AsterixDB (Alsubaiee et al., 2014)	1	1	X	1	X	1	X	1	1	1	1	1	X	X	X
A5	M3Data (Ionescu et al., 2014)	1	1	1	1	X	1	X	1	X	X	X	X	X	X	 Image: A set of the set of the
A6	(Twardowski and Ryzko, 2014)	1	1	1	1	✓	1	1	×	X	X	X	X	×	X	X
A7	λ -arch. (Marz and Warren, 2015)	1	1	1	1	1	1	1	×	X	X	X	X	×	X	X
	SOLID (Martínez-Prieto et al., 2015)	X	1	×	1	1	X	X	1	X	×	X	X	×	×	×
A9	Liquid (Fernandez et al., 2015)	X	×	X	1	1	1	1	×	X	X	X	1	×	X	X
A10	RADStack (Yang et al., 2015)		1	X	1	1	1	X	1	X	X	X	X	×	X	 Image: A second s
A11	(Kroß et al., 2015)		1	1	1	1	1	1	×	X	X	X	X	×	X	X
A12	HaoLap (Song et al., 2015)		1	X	X	X	1	X	1	X	X	X	X	×	X	X
A13	(Wang et al., 2015)		1	1	X	X	1	1	×	X	X	X	1	1	X	 Image: A second s
A14	SHMR (Guo et al., 2015)		1	X	X	X	1	×	1	×	X	X	X	×	X	X
A15	Tengu (Vanhove et al., 2015)		1	1		✓	1	×	1	×	×	1	X	×	X	X
A16	(Xie et al., 2015)	1	1	X	X	X	X	×	1	×	X	X	1	×	1	X
A17	$(e S \acute{a} et al., 2015)$		1	1	×	X	1	X	1	X	×	X	X	×	×	 Image: A second s
A18	D-Ocean (Zhuang et al., 2016)	 ✓ 	✓	X	X	X	1	✓	1	✓	X	X	X	×	×	×
Software Reference Architectures		Volume		Velocity		Variety		Variability		Veracity						
		R1.1	R1.2	R1.3	R2.1	R2.2	R3.1	R3.2	R3.3	R4.1	R4.2	R4.3	R5.1	R5.2	R5.3	R5.4
A19	NIST (Grady et al., 2014)	1	1	1	X	X	X	X	1	X	×	1	X	1	1	1
A20	(Pääkkönen and Pakkala, 2015)	1	1	1	1	1	1	1	X	X	X	×	X	X	X	1
A21	(Geerdink, 2015)	1	1	1	X	X	1	1	×	X	X	X	X	X	×	X
	Bolster	1	1	1	1	1	1	1	1	 ✓ 	1	1	1	1	1	1

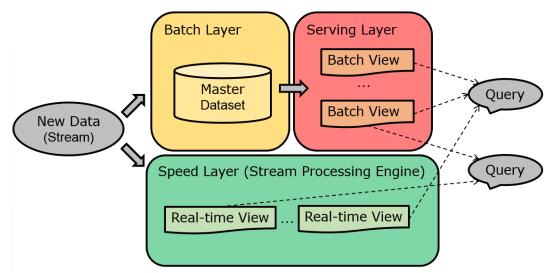
Conclusions of the SLR

• Two major families of architectures

Family	Volume	Velocity	Variety	Variability	Veracity
The λ-architecture and evolutions					
Semantic Web principles & technologies					

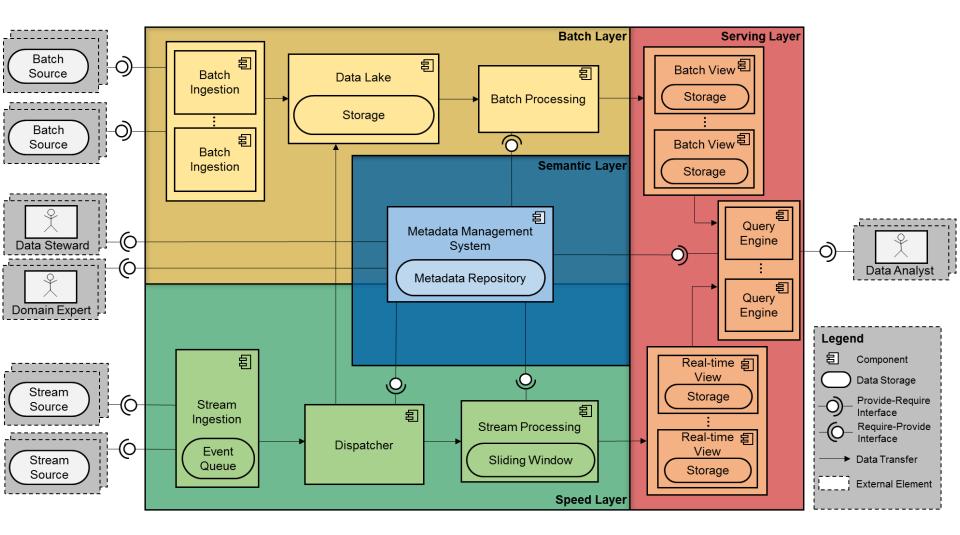
• No architecture satisfies the sought requirements

Fulfils requirement Partially fulfils requirement Does not fulfil requirement

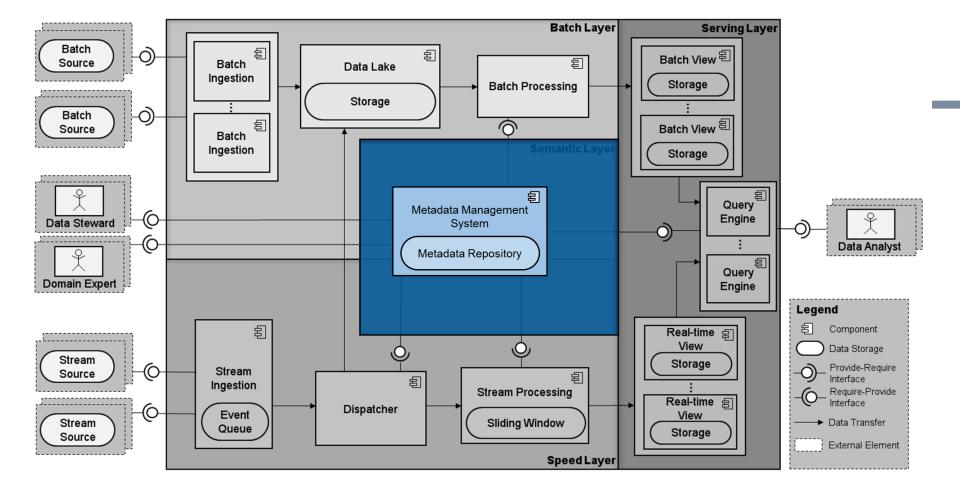

- Focused on performance-oriented aspects
- Semantic-awareness is poorly covered

Bolster

- A SRA for semantic-aware Big Data systems
- Combination of the two major families
 - Based on the λ -architecture


Use Semantic Web technologies to represent machine-readable metadata

[Marz et al., 2015]



Bolster conceptual view

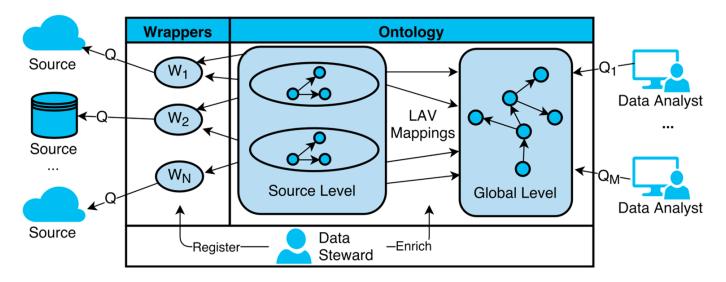
AN INTEGRATION-ORIENTED ONTOLOGY TO GOVERN SCHEMA EVOLUTION

The data variety challenge

- How to provide an integrated view over an evolving and heterogeneous set of data sources?
- Ontologies as a formal tool to provide a shared conceptualization of the domain of interest, formalized by means of Description Logics (DLs)
 - TBox general properties of concepts and roles
 - ABox instances of concepts and roles
- Ontology-Based Data Access (OBDA)
 - Allow users to query the ontology (\mathcal{T}), and translate such queries to the sources (\mathcal{S}) via mappings (\mathcal{M})
 - ABox is in the sources

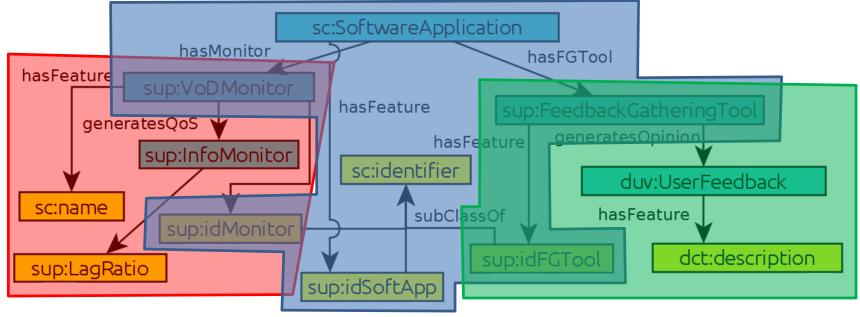
[Horrocks et al., 2016]

OBDA in our scenario?


- What if ${\mathcal S}$ changes? How are queries on ${\mathcal T}$ affected?
- Traditional OBDA represent schema mappings following the *global-as-view* approach
 - Elements of ${\mathcal T}$ are characterized as queries over ${\mathcal S}$
 - Simple query answering (unfolding), but changes in the sources might invalidate mappings
- We aim for *local-as-view* schema mappings
 - Elements of ${\mathcal S}$ are characterized as queries over ${\mathcal T}$
 - Loosely-coupling between T and S, but query answering
 might require reasoning

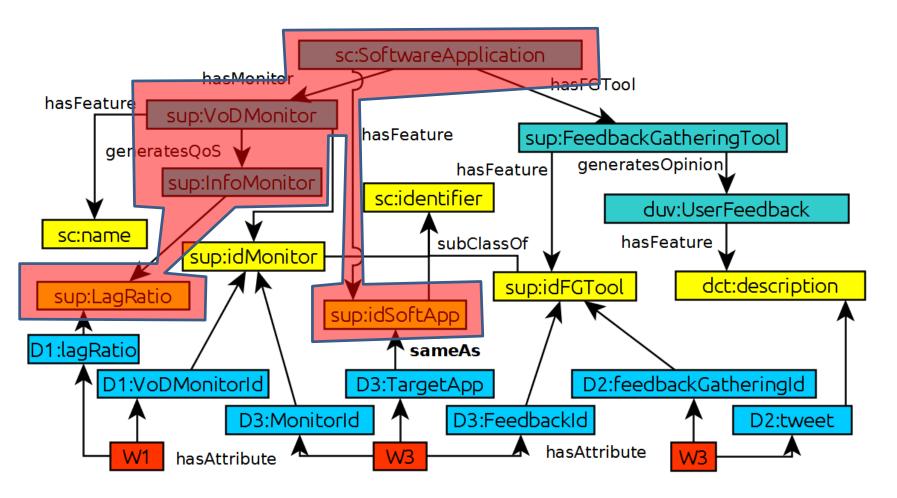
An RDF-based approach

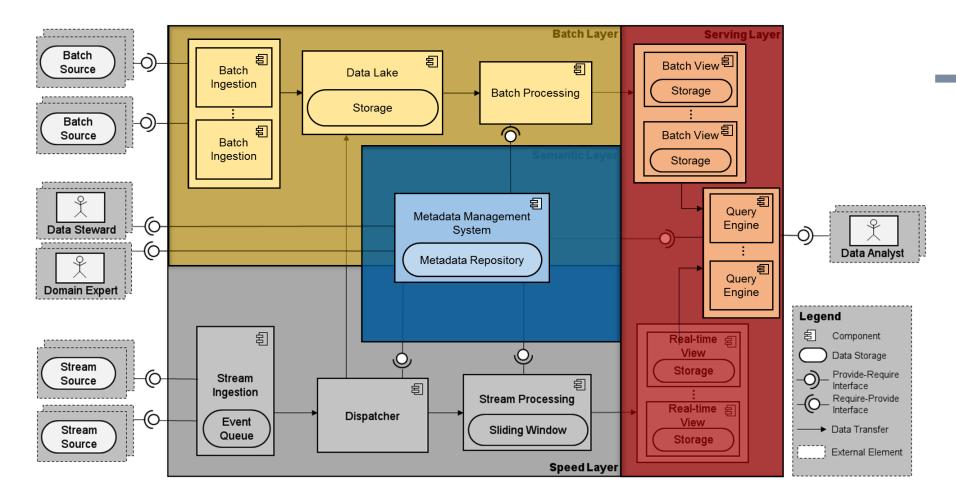
- Global Level \mathcal{G} integrated view for users to query
- Source Level S structure of the data sources
- Mappings \mathcal{M} LAV mappings between $\mathcal G$ and $\mathcal S$



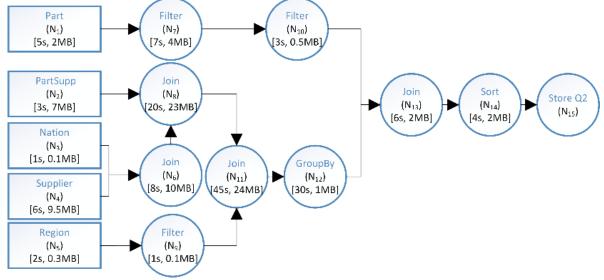
• Given a SPARQL pattern matching over \mathcal{G} , return an equivalent walk over \mathcal{S} (chain of joins and projections) using the mappings \mathcal{M} and translate it to a union of CQs over the wrappers.

The Big Data Integration ontology


- *G* Concepts and features of analysis
- \mathcal{S} Accurate representation of the wrappers
- *M* LAV mappings with named graphs (SPARQL support)


Query answering

 $\Pi_{W_1.lagRatio,W3.TargetApp}(\sigma_{W_1.VoDMonitorId=W_3.MonitorId}(W_1 \times W_3))$


INTERMEDIATE RESULTS MATERIALIZATION SELECTION FOR DATA-INTENSIVE FLOWS

Reusing intermediate results

 Batch processing is commonly represented by DIFs (e.g., MapReduce or Spark jobs)

- User workloads have high temporal locality
 - 80% will be reused in the range of minutes to hours
- How can I optimize its reuse?

[Chen et al., 2012]

Challenges

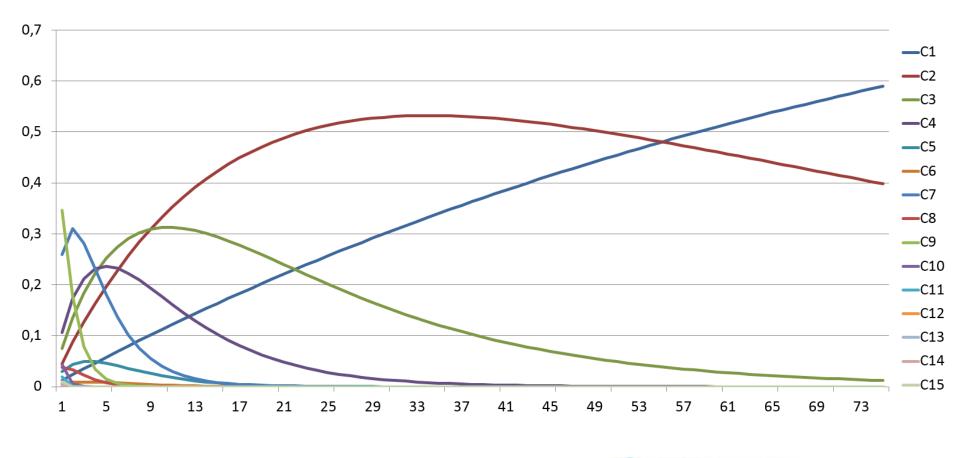
- What intermediate results to materialize?
- How to materialize them? (Rana Faisal)
- Materialized view selection in DIFs
 - A cost-based approach driven by SLAs (e.g., optimize query time, storage space, ...)
 - Multiple and conflicting objectives
- We provide a local search algorithm that probabilistically selects a set of near-optimal intermediate results to materialize.

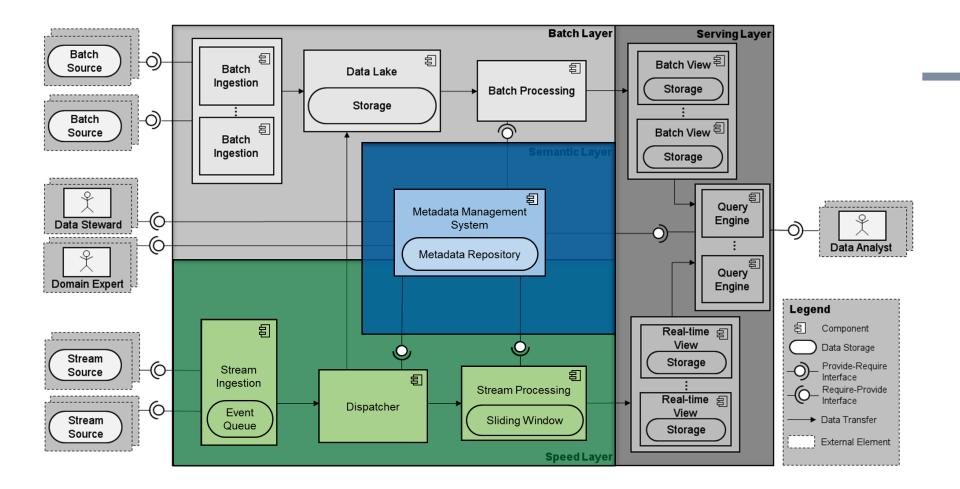
The cost model

- Statistics logical properties of the flow, propagated across operators
 - Selectivity factor, distinct values per attribute, cardinality
- Metrics engine-specific estimations per node
 - Size of a disk block, memory buffers, size of attributes
 - We estimate execution (disk I/O) and space (blocks)
- Cost functions composition of metrics to measure a SLA
 - Loading cost, query cost, storage cost
 - Easily extensible: monetary aspects, energy consumption

[Nguyen et al., 2012], [Roukh et al., 2015]

Shotgun hill-climbing


- Design goals (heuristic function)
 Combination of SLAs (e.g., 75% query, 25% space)
- Hill-climbing greedy to the best heuristic
- Cost functions are non-monotonic
 - The output will vary with the initial state
- Approach: execute hill-climbing a certain number of iterations
 - Random initial state
 - Keep the best heuristic across iterations

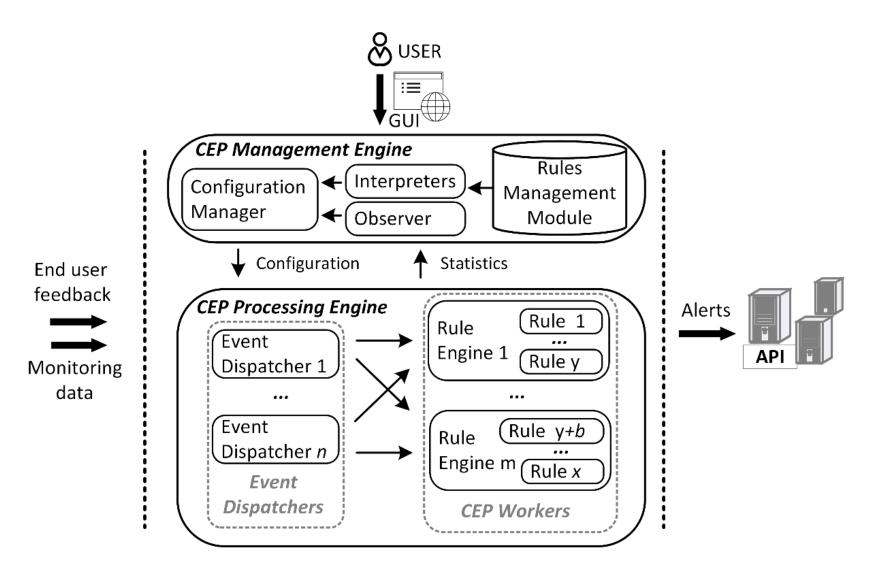

Evaluation

• Evolution of probabilities per number of iterations for each different solution

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

A MANAGEMENT SYSTEM FOR DISTRIBUTED COMPLEX EVENT RECOGNITION


CER systems

- Complex Event Recognition (CER) deal with the detection of events in Big Data streams
 - E.g., raise an alert if A, no B after 5 minutes and 3 times C after 15 minutes
- Distributing CER operators is a challenging task
 Most approaches rely on centralized solutions
- Proposed approach
 - A set of shared nothing CER engines (e.g., Esper)
 - Dynamic event dispatchment and rule placement

Architecture for distributed CER

Cost-based distribution of events

- We aim for a cost model to decide
 - Rule placement
 - Where are events dispatched
- Rely on an implementation-independent declaration of rules
 - Based on an RDF vocabulary
 - Linked to the BDI ontology
- Annotate it with runtime metadata

CONCLUSIONS & PUBLICATION PLAN

Conclusions

- Autonomic Big Data computing
 - Focusing on self-optimization
- Bolster
 - An SRA that includes the *Knowledge* component
- The Big Data Integration ontology
 - LAV mappings for dynamic environments
- SLA-driven materialization of intermediate results
- Distributed CER

References (I) – in order of appearance

- Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. *Computer*, *36*(1), 41-50.
- Löser, A., Hueske, F., & Markl, V. (2009). Situational business intelligence. *BIRTE*, 1-11.
- Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data systems. *Manning*.
- Horrocks, I., Giese, M., Kharlamov, E., & Waaler, A. (2016). Using semantic technology to tame the data variety challenge. *IEEE Internet Computing*, *20*(6), 62-66.
- Jovanovic, P., Romero, O., & Abelló, A. (2016). A unified view of data-intensive flows in business intelligence systems: a survey. Transactions on Large-Scale Data-and Knowledge-Centered Systems, 29, 66-107.

References (II) – in order of appearance

- Chen, Y., Alspaugh, S., & Katz, R. (2012). Interactive analytical processing in big data systems: A cross-industry study of mapreduce workloads. PVLDB, 5(12), 1802-1813.
- Nguyen, T. V. A., Bimonte, S., d'Orazio, L., & Darmont, J. (2012, March). Cost models for view materialization in the cloud. In Proceedings of the 2012 Joint EDBT/ICDT Workshops (pp. 47-54). ACM.
- Roukh, A., Bellatreche, L., Boukorca, A., & Bouarar, S. (2015, October). Eco-dmw: Eco-design methodology for data warehouses. In DOLAP (pp. 1-10). ACM.
- Cugola, G., & Margara, A. (2012). Processing flows of information: From data stream to complex event processing. ACM Computing Surveys (CSUR), 44(3), 15.

