
Self-Optimizing Big Data Processing
IT4BI-DC Doctoral Colloquium

Sergi Nadal
Supervised by Alberto Abelló, Oscar Romero and Stijn Vansummeren

Also in collaboration with Panos Vassiliadis

06/07/2017

Autonomic Computing

• IBM’s vision of autonomic computing

• The MAPE-K adaptation control loop

“a computing environment with the ability to

manage itself and dinamically adapt to change in

accordance with business policies and objectives”

[Kephart et al., 2003]

On the need of autonomic Big Data
computing

• Big Data ecosystems store and process

– Stationary data  batch (e.g., transactional)

– Situational data  real-time (e.g., social networks)

• Situational data is highly heterogeneous and
dynamic by nature

– Changes in the arrival rate, schema, data distribution, …

– Direct impact on the system’s performance

• Self-adaptation is highly needed

– Self-healing, self-configuration, self-protection, …

– We focus on self-optimization

3
[Löser et al., 2009]

Metadata – the cornerstone for
self-optimization

• A Big Data architecture with the Knowledge
component, capable of answering:

– What are my data sources?

– Which schema are they providing?

– How frequent data are arriving?

– How are my data changing? (…)

• Make the architecture aware of “what’s going on”

– Semantic awareness

– Machine-readable metadata to provide (partial)
automation of data definition and exploitation

4

Today’s overview

• A software reference architecture for semantic-
aware Big Data systems

• Self-optimization techniques

– An integration-oriented ontology to govern evolution

– Intermediate results materialization selection for
data-intensive flows

– A management system for distributed CER

• Conclusions & publication plan

• References

5

A SOFTWARE REFERENCE ARCHITECTURE
FOR SEMANTIC-AWARE BIG DATA SYSTEMS

6

Requirements for a semantic-aware
Big Data architecture

• 5 dimensions, 15 functional requirements

– A SLR on Big Data architectures

Conclusions of the SLR

• Two major families of architectures

• No architecture satisfies the
sought requirements

• Focused on performance-oriented aspects

• Semantic-awareness is poorly covered

8

Family Volume Velocity Variety Variability Veracity

The λ-architecture and
evolutions

Semantic Web principles &
technologies

Fulfils requirement

Partially fulfils requirement

Does not fulfil requirement

Bolster

• A SRA for semantic-aware Big Data systems

• Combination of the two major families

– Based on the λ-architecture

– Use Semantic Web technologies to represent
machine-readable metadata

9
[Marz et al., 2015]

Bolster conceptual view

AN INTEGRATION-ORIENTED ONTOLOGY TO
GOVERN SCHEMA EVOLUTION

The data variety challenge

• How to provide an integrated view over an evolving
and heterogeneous set of data sources?

• Ontologies as a formal tool to provide a shared
conceptualization of the domain of interest,
formalized by means of Description Logics (DLs)

– TBox – general properties of concepts and roles

– ABox – instances of concepts and roles

• Ontology-Based Data Access (OBDA)
– Allow users to query the ontology (T .), and translate such

queries to the sources (S) via mappings (M)

– ABox is in the sources

[Horrocks et al., 2016]

OBDA in our scenario?

• What if S changes? How are queries on T .affected?

• Traditional OBDA represent schema mappings
following the global-as-view approach
– Elements of T .are characterized as queries over S

– Simple query answering (unfolding), but changes in the
sources might invalidate mappings

• We aim for local-as-view schema mappings
– Elements of S.are characterized as queries over T

– Loosely-coupling between T .and S, but query answering

might require reasoning

An RDF-based approach

14

• Global Level G – integrated view for users to query

• Source Level S – structure of the data sources

• MappingsM – LAV mappings between G and S

• Given a SPARQL pattern matching over G, return an equivalent
walk over S (chain of joins and projections) using the mappings
M and translate it to a union of CQs over the wrappers.

The Big Data Integration ontology
• G - Concepts and features of analysis

• S - Accurate representation of the wrappers

• M - LAV mappings with named graphs (SPARQL support)

Query answering

INTERMEDIATE RESULTS MATERIALIZATION
SELECTION FOR DATA-INTENSIVE FLOWS

Reusing intermediate results

• Batch processing is commonly represented by DIFs
(e.g., MapReduce or Spark jobs)

• User workloads have high temporal locality

– 80% will be reused in the range of minutes to hours

• How can I optimize its reuse?

[Chen et al., 2012]

Challenges

19

• What intermediate results to materialize?

• How to materialize them?

• Materialized view selection in DIFs

– A cost-based approach driven by SLAs (e.g., optimize query
time, storage space, …)

– Multiple and conflicting objectives

• We provide a local search algorithm that
probabilistically selects a set of near-optimal
intermediate results to materialize.

(Rana Faisal)

The cost model

• Statistics – logical properties of the flow, propagated
across operators

– Selectivity factor, distinct values per attribute, cardinality

• Metrics – engine-specific estimations per node

– Size of a disk block, memory buffers, size of attributes

– We estimate execution (disk I/O) and space (blocks)

• Cost functions – composition of metrics to measure
a SLA

– Loading cost, query cost, storage cost

– Easily extensible: monetary aspects, energy consumption

20
[Nguyen et al., 2012], [Roukh et al., 2015]

Shotgun hill-climbing

• Design goals (heuristic function)

– Combination of SLAs (e.g., 75% query, 25% space)

• Hill-climbing – greedy to the best heuristic

• Cost functions are non-monotonic

– The output will vary with the initial state

• Approach: execute hill-climbing a certain
number of iterations

– Random initial state

– Keep the best heuristic across iterations

21

Evaluation

• Evolution of probabilities per number of iterations
for each different solution

22

A MANAGEMENT SYSTEM FOR DISTRIBUTED
COMPLEX EVENT RECOGNITION

CER systems

• Complex Event Recognition (CER) deal with the
detection of events in Big Data streams

– E.g., raise an alert if A, no B after 5 minutes and 3
times C after 15 minutes

• Distributing CER operators is a challenging task

– Most approaches rely on centralized solutions

• Proposed approach

– A set of shared nothing CER engines (e.g., Esper)

– Dynamic event dispatchment and rule placement

[Cugola et al., 2012]

Architecture for distributed CER

25

Cost-based distribution of events

• We aim for a cost model to decide

– Rule placement

– Where are events dispatched

• Rely on an implementation-independent
declaration of rules

– Based on an RDF vocabulary

– Linked to the BDI ontology

• Annotate it with runtime metadata

26

CONCLUSIONS & PUBLICATION
PLAN

Conclusions

• Autonomic Big Data computing

– Focusing on self-optimization

• Bolster

– An SRA that includes the Knowledge component

• The Big Data Integration ontology

– LAV mappings for dynamic environments

• SLA-driven materialization of intermediate
results

• Distributed CER

References (I) – in order of
appearance

• Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic
computing. Computer, 36(1), 41-50.

• Löser, A., Hueske, F., & Markl, V. (2009). Situational business
intelligence. BIRTE, 1-11.

• Marz, N., & Warren, J. (2015). Big Data: Principles and best
practices of scalable realtime data systems. Manning.

• Horrocks, I., Giese, M., Kharlamov, E., & Waaler, A. (2016).
Using semantic technology to tame the data variety
challenge. IEEE Internet Computing, 20(6), 62-66.

• Jovanovic, P., Romero, O., & Abelló, A. (2016). A unified view
of data-intensive flows in business intelligence systems: a
survey. Transactions on Large-Scale Data-and Knowledge-
Centered Systems, 29, 66-107.

29

References (II) – in order of
appearance

• Chen, Y., Alspaugh, S., & Katz, R. (2012). Interactive analytical
processing in big data systems: A cross-industry study of
mapreduce workloads. PVLDB, 5(12), 1802-1813.

• Nguyen, T. V. A., Bimonte, S., d'Orazio, L., & Darmont, J. (2012,
March). Cost models for view materialization in the cloud. In
Proceedings of the 2012 Joint EDBT/ICDT Workshops (pp. 47-
54). ACM.

• Roukh, A., Bellatreche, L., Boukorca, A., & Bouarar, S. (2015,
October). Eco-dmw: Eco-design methodology for data
warehouses. In DOLAP (pp. 1-10). ACM.

• Cugola, G., & Margara, A. (2012). Processing flows of
information: From data stream to complex event processing.
ACM Computing Surveys (CSUR), 44(3), 15.

30

