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Autonomic Computing

• IBM’s vision of autonomic computing

• The MAPE-K adaptation control loop

“a computing environment with the ability to

manage itself and dinamically adapt to change in

accordance with business policies and objectives”

[Kephart et al., 2003]



On the need of autonomic Big Data 
computing

• Big Data ecosystems store and process

– Stationary data  batch (e.g., transactional)

– Situational data  real-time (e.g., social networks)

• Situational data is highly heterogeneous and 
dynamic by nature

– Changes in the arrival rate, schema, data distribution, …

– Direct impact on the system’s performance

• Self-adaptation is highly needed

– Self-healing, self-configuration, self-protection, …

– We focus on self-optimization
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Metadata – the cornerstone for
self-optimization

• A Big Data architecture with the Knowledge
component, capable of answering:

– What are my data sources?

– Which schema are they providing?

– How frequent data are arriving?

– How are my data changing? (…)

• Make the architecture aware of “what’s going on”

– Semantic awareness

– Machine-readable metadata to provide (partial) 
automation of data definition and exploitation
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Today’s overview

• A software reference architecture for semantic-
aware Big Data systems

• Self-optimization techniques

– An integration-oriented ontology to govern evolution

– Intermediate results materialization selection for
data-intensive flows

– A management system for distributed CER

• Conclusions & publication plan

• References
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A SOFTWARE REFERENCE ARCHITECTURE
FOR SEMANTIC-AWARE BIG DATA SYSTEMS
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Requirements for a semantic-aware
Big Data architecture

• 5 dimensions, 15 functional requirements

– A SLR on Big Data architectures



Conclusions of the SLR

• Two major families of architectures

• No architecture satisfies the
sought requirements

• Focused on performance-oriented aspects

• Semantic-awareness is poorly covered
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Family Volume Velocity Variety Variability Veracity

The λ-architecture and
evolutions

Semantic Web principles &
technologies

Fulfils requirement

Partially fulfils requirement

Does not fulfil requirement



Bolster

• A SRA for semantic-aware Big Data systems

• Combination of the two major families

– Based on the λ-architecture

– Use Semantic Web technologies to represent
machine-readable metadata

9
[Marz et al., 2015]



Bolster conceptual view



AN INTEGRATION-ORIENTED ONTOLOGY TO 
GOVERN SCHEMA EVOLUTION



The data variety challenge

• How to provide an integrated view over an evolving 
and heterogeneous set of data sources?

• Ontologies as a formal tool to provide a shared 
conceptualization of the domain of interest, 
formalized by means of Description Logics (DLs)

– TBox – general properties of concepts and roles

– ABox – instances of concepts and roles

• Ontology-Based Data Access (OBDA)
– Allow users to query the ontology (T   .), and translate such 

queries to the sources (S ) via mappings (M)

– ABox is in the sources

[Horrocks et al., 2016]



OBDA in our scenario?

• What if S changes? How are queries on T .affected?

• Traditional OBDA represent schema mappings 
following the global-as-view approach
– Elements of T .are characterized as queries over S

– Simple query answering (unfolding), but changes in the 
sources might invalidate mappings

• We aim for local-as-view schema mappings
– Elements of S.are characterized as queries over T

– Loosely-coupling between T .and S, but query answering 

might require reasoning



An RDF-based approach
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• Global Level G – integrated view for users to query

• Source Level S – structure of the data sources

• MappingsM – LAV mappings between G and S

• Given a SPARQL pattern matching over G, return an equivalent
walk over S (chain of joins and projections) using the mappings
M and translate it to a union of CQs over the wrappers.



The Big Data Integration ontology
• G - Concepts and features of analysis

• S - Accurate representation of the wrappers

• M - LAV mappings with named graphs (SPARQL support) 



Query answering



INTERMEDIATE RESULTS MATERIALIZATION
SELECTION FOR DATA-INTENSIVE FLOWS



Reusing intermediate results

• Batch processing is commonly represented by DIFs
(e.g., MapReduce or Spark jobs)

• User workloads have high temporal locality

– 80% will be reused in the range of minutes to hours

• How can I optimize its reuse?

[Chen et al., 2012]



Challenges
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• What intermediate results to materialize?

• How to materialize them?

• Materialized view selection in DIFs

– A cost-based approach driven by SLAs (e.g., optimize query
time, storage space, …)

– Multiple and conflicting objectives

• We provide a local search algorithm that
probabilistically selects a set of near-optimal 
intermediate results to materialize.

(Rana Faisal)



The cost model

• Statistics – logical properties of the flow, propagated 
across operators

– Selectivity factor, distinct values per attribute, cardinality

• Metrics – engine-specific estimations per node

– Size of a disk block, memory buffers, size of attributes

– We estimate execution (disk I/O) and space (blocks)

• Cost functions – composition of metrics to measure 
a SLA

– Loading cost, query cost, storage cost

– Easily extensible: monetary aspects, energy consumption
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[Nguyen et al., 2012], [Roukh et al., 2015]



Shotgun hill-climbing

• Design goals (heuristic function)

– Combination of SLAs (e.g., 75% query, 25% space)

• Hill-climbing – greedy to the best heuristic

• Cost functions are non-monotonic

– The output will vary with the initial state

• Approach: execute hill-climbing a certain
number of iterations

– Random initial state

– Keep the best heuristic across iterations
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Evaluation

• Evolution of probabilities per number of iterations 
for each different solution
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A MANAGEMENT SYSTEM FOR DISTRIBUTED 
COMPLEX EVENT RECOGNITION



CER systems

• Complex Event Recognition (CER) deal with the
detection of events in Big Data streams

– E.g., raise an alert if A, no B after 5 minutes and 3 
times C after 15 minutes

• Distributing CER operators is a challenging task

– Most approaches rely on centralized solutions

• Proposed approach

– A set of shared nothing CER engines (e.g., Esper)

– Dynamic event dispatchment and rule placement

[Cugola et al., 2012]



Architecture for distributed CER

25



Cost-based distribution of events

• We aim for a cost model to decide

– Rule placement

– Where are events dispatched

• Rely on an implementation-independent
declaration of rules

– Based on an RDF vocabulary

– Linked to the BDI ontology

• Annotate it with runtime metadata
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CONCLUSIONS & PUBLICATION
PLAN



Conclusions

• Autonomic Big Data computing

– Focusing on self-optimization

• Bolster

– An SRA that includes the Knowledge component

• The Big Data Integration ontology

– LAV mappings for dynamic environments

• SLA-driven materialization of intermediate
results

• Distributed CER
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