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Outline 

Project Statement 
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Graphs are everywhere 

– Social Network 

– Collaboration network 

– Communication network 

– Road network 

– Protein interaction network 

– Web graph 

– Sensor Network 
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Types of graph 

• Static Graph : classical graphs 

• Dynamic Graphs: Graphs which evolve over 
time due to insert of new edges or nodes or 
deletion of edges or nodes. 

• Temporal/Interaction Networks: Time 
dependent graphs. 
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Example 
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Temporal Graph in sliding window 
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Consider a window length of size 5. 
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Temporal Graph in sliding window 
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Consider a window length of size 5. 
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Problem! 
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Complexity Rapidly Evolving with Time 

Graph analytics take lot of time and memory 

https://lts2.epfl.ch/blog/gbr/category/graph/ 



2. Distributed Graph Processing 

1. Creating scalable algorithms for temporal networks. 

Two approaches to solve 
the problem. 
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Project Milestones 
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M1: 
Algorithms 

• Density Profile (T1) 

• Information Flow (T2) 

M2: System 

• Pregel Cost Model (T3) 

• Rule based partitioning (T4) 

M3: 
Extension 

• Cycle Detection(T5) 

• Dynamic Repartitions (T6) (optional) 



Gantt Chart 
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ULB ULB UPC 

Fall: Aug – Jan 
Spring Feb - July 

MileStone

M1- T1

M1- T2

M2 - T3

M2 - T4

M3 - T5

M3 - T6

Spring 2016 Fall 2016 Spring 2017 Fall 2017 Sping 2018Fall 2014 Spring 2015 Fall 2015



Publications Status 

• Milestone 1 
– 1 paper accepted in ECML/PKDD 2015(T1) 

– 1 paper accepted in WSDM 2017 (T2) (2nd author) 
– 1 paper accepted in EDBT 2017 (T2) 
– Nectar Track paper in ECML/PKDD 2017 (T2)  
– Submitted Demo Paper for CIKM (19th Aug, 2017) (T2) (2nd author) 
– Journal paper ready for submission in Knowledge and Information Systems (KAIS) 

(T2) (2nd author) 

• Milestone 2 
– 1 paper accepted in ADBIS 2017 (T3) 
– Journal paper (work in progress) for  Information Systems Journal– By  Sep 

2017.(T4) 

• Milestone 3 
– 1 workshop paper submitted in TDLSG-ECML/PKDD 2017(T5) 
– Paper for WWW 2017 (work in progress) – By Oct 2017. (T5) 
– Conference paper (venue not decided) (T6) - optional 
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*Code at: https://github.com/rohit13k 
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Project Background 
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Milestone 1 Topic 1 

Kumar, R., Calders, T., Gionis, A., & Tatti, N.. 
Maintaining Sliding-Window Neighborhood 
Profiles in Interaction Networks.  Published 
in ECML/PKDD 2015 
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1. Maintaining sliding-window neighborhood 
profiles in interaction networks* 

Query: How many nodes are within distance r from node v at time t? 

- We call it Neighborhood profile of a node! 

- For example How many nodes within distance 2 from a at different time t 
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Neighborhood profile in sliding window 
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Consider a window length of size 5. 
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Neighborhood profile in sliding window 
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Neighborhood profile in sliding 
window 
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Complexity Analysis 

n nodes and m interactions  
Exact Algorithm: 
Time Complexity : 

– O(r m n log(n)) 

Memory Complexity:  
– O(r n2)  

Sketch based approach using our extension of HLL: 
Time Complexity : O(r m 2kloglog(n)) 
Memory Complexity: O(r n2kloglog(n)) 
k=6 , ω<<n 
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Neighborhood profile in sliding window 
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Milestone 1 Topic 2 

Influence Propagation in temporal Networks 

- Kumar, R., & Calders, T. Information 
Propagation in Interaction Networks. 
Published in EDBT 2017. 

- Saleem, M. A., Kumar, R., Calders, T., Xie, X., & 
Pedersen, T. B. Location Influence in Location-
based Social Networks. Published in WSDM 
2017 ACM. 
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1. Information Propagation in 
Interaction Networks 
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9 AM X 

If X= 9:10 AM 

If X= 8:10 AM or After 10 days!! 

a 

b 

c 



Influence Reachability Set 

The set of users in the network which could be 
reached by user a in given time window is it’s 
influence reachability set. 
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Information Propagation in Interaction 
Networks* 

7/11/2017 eBISS 2017 24 



What we want to study! 

• Given a set of initial users and a time window 
identify the number of users who will get 
influenced. (Influence oracle problem) 

 

• Find top k influential users in the given 
interaction network under a time constrained 
information propagation. (Influence 
Maximization Problem) 
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Algorithm 

• One pass algorithm! 
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1, (a,d) 
2, (e,f ) 
3, (d,e) 
4, (e,b) 
5, (a,b) 
6, (b,e) 
7, (e,c) 
8, (b,c) 

For an entry t,u,v: 
    Add (S(u) , (v, t))  
    S(u)=Merge(S(u),S(v)) 
 
Merge: 
    For All (x, t’ ) ∈  S (v) 

        If (t – t’ ) < ω 
            Add (S(u), (x, t’ )) 
 
  

S(u) = {(v, ʎ(u, v)) } 

ʎ(u, v) is defined as the end time of the earliest information 
channel of length ω or less from u to v. 



Complexity Analysis 

n nodes and m interactions  
Exact Algorithm: 
Time Complexity : 

– О (mn) 

Memory Complexity:  
– О (n2) 

Sketch based approach using our extension of HLL: 
Time Complexity : О (m2klog(ω)2) 
Memory Complexity: О (n2klog(ω)2) 
k=6 , ω<<n 
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Efficiency Results 

45 Million interactions in ~9 min in this laptop!! 
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Data Set #Nodes(103) Edges(103) IRS SIKM PageRank SHD ConTinEst

twitter-US 2016 4,468 44,638 498 23.6 4261 3338 -

Enron 87 1148 93.7 2.2 49.4 8.1 1349

lkml-reply 27 1048 117.9 1.7 29.8 22.9 733

Facebook wall posts 47 877 10.3 1.1 35.6 2.9 790

twitter-higgs 304 526 2.2 4.3 29.8 1.5 3802

Slashdot threads 51 141 1.1 1.2 21.9 2.1 694



Effectiveness Results Using Time 
Constrained IC model. 
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2. Towards Location Influence in Location-based 
Social Networks* 
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*Joint work with Muhammad Aamir Saleem 

u, L , t1 

v, L , t2 

.. 

. 

. 
 

v, L’ , t3 

u, L’ , t4 

.. 

. 

.. 

. 

L 

L’ 

v, (t3-t2) 

u, (t4-t1) 

Check-ins 



3. Towards Location Influence in Location-based 
Social Networks* 
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*Joint work with Muhammad Aamir Saleem 

Find top k locations. 



Modeling influence among locations 

Influence Strength: Number of users travelling between the locations.  

 Absolute Influence Model: 

– Influence exists if bridging visitors within a given time are greater than threshold 

– Example: T1 => T2 := |VB(T1,T2)| >= 2 

 Relative Influence Model: 

– Biasness of popular locations, consider relative influence 

– Example: T1=> H1 :=  |b,c,e| / | b,c,e,i,d | >=0.4 

 Friendship-based Influence:  

– Handle sparsity. 

– Predict future influence. 
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Influence spread 
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Milestone 2 Topic 3 

Rohit Kumar, Alberto Abello, and Toon Calders. 
Cost Model for Pregel on GraphX. Accepted In 
ADBIS 2017. 
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Cost Model for Pregel on GraphX 
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Cost Model 
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Cost Model (Continued..) 
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Cost Model (Continued..) 
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Cost model accuracy test 
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Used Connected Component algorithm with CRVC partitioning on  Twitter Euro dataset to 
get the constants 



Outline 
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Work done so far 
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Milestone 2 Topic 4 

Rule based graph partitioner for large 
distributed graph processing in Apache-GraphX. 

Rohit Kumar, Alberto Abello, and Toon Calders. 

In Journal version. 
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Rule derivation 
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Partitioning Strategy 

Algorithm Graph Structure 

Cluster Configuration 

Time 



Rule 1 
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Graph property – Low degree 

Algo Property- High Communication (PageRank) 

All function: same weight and is very fast 

DBH is better  

 1) Writing messages in 2nd phase is less 

 2) Merge messages in 3rd phase is very less 

 

But if mergeMsg function is heavy 

CRVC will be better 

 



Milestone 3 Topic 5 

- Rohit Kumar and Toon Calders. Finding simple 
temporal cycles in an interaction network. 
Submitted in TDLSG-ECML/PKDD 2017 
(workshop). 

- Rohit Kumar and Toon Calders. Efficient two 
phase approach to find simple temporal cycles 
in an interaction network. Planned to submit 
in Oct 2017 for WWW 2018 conference. 
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Temporal simple cycle 
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Why Cycles? 

• Cyclic transactions are indication of financial 
frauds. 

• In stock market trading cyclic patterns may 
indicate attempts to artificially create high 
trading volumes. 

• To study information flow pattern in 
communication network. 
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Cycle frequency distribution 
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SMS FB chat 

Retweet network 
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Milestone 3 Topic 6 

Dynamic Repartition in GraphX for streaming 
graph. Rohit Kumar, Alberto Abello, Toon 
Calders. 
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Batch wise streaming. 
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Dynamic Repartition for batches 
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Batch 1 

1. Use Rule based 
strategy to determine  
Partitioning strategy. 

1. Calculate repartition 
cost.(CR) 

2. Estimate cost for new 
partitioner (Cnew) 

3. Estimate cost using old 
partitioner. (Cold) 

Batch n 

If(Cnew - Cold)> CR + ε 
Use New partitioning.  



Conclusion 

• Analytical queries on temporal network need 
different approach then classical graph mining 
algorithm. 

• Using window based snapshots on temporal 
graphs opens up interesting analytics problems. 

• Using sketch based approximate solution are 
most of the time sufficient to solve the problem. 

• A distributed system for evolving graph is missing 
and need to be addressed. 
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Thank you! 



Graph Stream mining and processing 

• Proposed Approach 
– Study graph stream mining using the approximated graph sketch 

approach to create single pass graph mining algorithms. 

– Create a distributed graph processing framework which supports 
dynamic updates and adapts the partitioning with changes in graph. 

7/11/2017 eBISS 2017 54 

• Most of the existing graph mining algorithms require multiple pass over 
the graph data. 

– The method of multiple pass is not scalable for large graphs or graph 
stream. 

• The graphs are becoming so large that it is difficult to store them in one 
single machine. 

– Traditional graph partitioning methods are one time partitioned and 
do not adopt to the changes in the graph. 



Maintaining sliding-window neighborhood 
profiles in interaction networks 

• In this paper we paper we presented a real-time monitoring of 
Neighborhood Profile of a node for a given time window in an 
interaction network. To address queries like: 
– How many distinct nodes are at shortest distance r from a node v at 

time t? 
– How many distinct nodes were at shortest distance r from a node v at 

time t and t-w? 

• We presented an online Algorithm to maintain Neighborhood 
profile of every node in the graph approximately. 

• Working on the distributed version of the algorithm. 
• Accepted in ECML/PKDD 2015 
• Published source code at github 

– https://github.com/rohit13k/NeighborhoodProfile 
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Information Propagation in Interaction Networks 

• The main focus of this study is that given a interaction network and 
a life span of the information or topic :  
– Find out the top k influential users.  
– Find out the spread of influence given a starting set of nodes or users.  
– If the information or influence has reached a particular set of users or 

nodes find out the possible initiators.  

• We presented an offline one pass algorithm to create Influence 
reachability set for every node in a interaction network to answer 
above queries.  

• Submitted in KDD got rejected !  
• Working on addressing review comments. 
• Planned to submit in EDBT in September. 
• Published source code at 

– https://github.com/rohit13k/InfluencePropagation 
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Towards Location Influence in Location-based 
Social Networks 

• In this study we analysis the user checkin activity stream generated 
by Location based social network to generate a Location to Location 
Interaction network. The type of queries we want to answer are: 
– Top K locations to maximize Influence Spread for Outdoor marketing. 
– Given a set of target locations find the minimum set of Source location 

to advertise so that all target locations are covered. 

• We present an online incremental algorithm to generate location 
influence summary of each location to answer the above queries. 

• We also present an offline one pass algorithm for a special case, 
which uses the data structure proposed in the previous paper. 

• Paper ready for submission. 
• Published source code at 

– https://github.com/rohit13k/LBSNAnalysisC 

• Planning a demo version of this paper in ICDM 2016. 
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https://github.com/rohit13k/LBSNAnalysisC
https://github.com/rohit13k/LBSNAnalysisC


• Working on the platform for distributed graph 
processing for Dynamic graphs. 
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Information Propagation in Interaction 
Networks 

• Algorithm details 
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Process backward 

60 
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Algorithm 
One pass algorithm! 
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1, (a,d) 
2, (e,f ) 
3, (d,e) 
4, (e,b) 
5, (a,b) 
6, (b,e) 
7, (e,c) 
8, (b,c) 

For an entry t,u,v: 
    Add (S(u) , (v, t))  
    S(u)=Merge(S(u),S(v)) 
 
Merge: 
    For All (x, t’ ) ∈  S (v) 

        If (t – t’ ) < ω 
            Add (S(u), (x, t’ )) 
 
  

S(u) = {(v, ʎ(u, v)) } 

ʎ(u, v) is defined as the end time of the earliest information 
channel of length ω or less from u to v. 


