An Integration-Oriented Ontology to Govern Evolution in Big Data Ecosystems

Sergi Nadal, Alberto Abelló, Oscar Romero Universitat Politècnica de Catalunya, BarcelonaTech

Stijn Vansummeren Université Libre de Bruxelles

Big Data ecosystems - What about Variety and Variability?

- Situational data (e.g., social networks) are mostly supplied by 3rd parties (e.g., Twitter) via REST APIs in semi-structured form
- Data analysts need to carefully study the documentation and adapt their tools to the particular schema provided.
- Endpoints are constantly evolving, hence analysts need to continuously adapt their tools to such changes

Ontology-Based Data Access (OBDA)

- . Ontologies, a shared conceptualization of a domain
- . Formalized by means of Description Logics (DLs)
- . An ontology (*T*) is constituted by:
 - TBox: general properties of concepts and roles
 - ABox: instances of concepts and roles
- . An OBDA system to query the ontology, and translate such queries to the sources (S) via mappings (M)
 - TBox in *DL-Lite* and ABox in the sources, in original format

Why traditional OBDA is not enough?

- What if *S* changes? How to avoid queries on *T* crashing?
- Schema mappings follow the *global-as-view* approach
 - Elements of T are characterized as queries (views) over S
 - Simple query answering (unfolding), but changes in the sources might invalidate mappings
- We want *local-as-view* schema mappings
 - Elements of S are characterized as queries (view) over T
 - Loosely-coupling between the ontology and the sources,

but query answering requires reasoning

The Big Data Integration Ontology

- We provide a new approach to OBDA with LAV mapping assertions to accommodate highly dynamic Big Data scenarios
- RDF vocabularies to annotate the elements of the ontology and drive the processes of evolution and query answering
- The Global level (G) depict concepts (green) and features (yellow), the Source lev. (S) wrappers (red) and schema (blue)
- The Data Steward responsible of registering wrappers of new or evolved sources, and creating LAV mappings

LAV Mappings

- Mappings are encoded as part of the ontology
- Each wrapper has associated a named graph over G, denoting what it is providing information about

Query Answering

SELECT ?w ?t

- Given a SPARQL conjunctive query (CQ) over G, return an
 - equivalent RA (union of CQs) over the wrappers

. A named graph is a subset of an RDF graph

WHERE		
{ ?t	rdf:type	sup:LagRatio .
?x	G:hasFeature	?t ;
	rdf:type	sup:InfoMonitor .
?y	<pre>sup:generatesQoS</pre>	?x ;
	rdf:type	sup:Monitor .
?z	<pre>sup:hasMonitor</pre>	?у;
	rdf:type	<pre>sc:SoftwareApplication ;</pre>
	G:hasFeature	?w .
?w	rdf:type	<pre>sup:idApplication</pre>
}		

- . The user can request only features, concepts do not exist in the sources but can be used to navigate
 - . A query must be *well-formed*
- . Concepts can only be joined via identifiers
- . There exists many possible ways to combine the wrappers

Seventh European Business Intelligence & Big Data Summer School (eBISS 2017) - Brussels, Belgium