Mining Simple Cycles in Temporal Network

Rohit Kumar^{1,2}, Toon Calders^{1,3}

¹Department of Computer and Decision Engineering Université Libre de Bruxelles, Belgium

²Department of Service and Information System Engineering Universitat Polit´ecnica de Catalunya (BarcelonaTech), Spain

³Department of Mathematics and Computer Science Universiteit Antwerpen, Belgium

1. Temporal Networks?

4. Results

A temporal network is a sequence of timestamped interactions ϵ over edges of a dynamic graph G = (V,E).

For example:

- > Social interactions in a social network.
- Email/ Message or call interaction in a communication network.

Algorithm run time and memory

- Data exchange in a computer network.
- People contact network.
- > Financial transaction data with time stamp of transactions.

2. What we want to study?

The main focus of this study is, given an temporal network and a time window **(w)** :

- Find all simple cycles in the time window
- Find root nodes which appear most frequently in the cycles.
- Using simple cycle frequency to categories the type of network.

	40,952	010,995	0.4	7.0	14	19
Higgs Twitter	304,691	526,167	35.2	187.3	156	1815
SMS-A	44,100	545,000	11.3	50.9	29	777

Cycle length Frequency Distribution

Using temporal variation of **DFS** with window limit on the length of the path we can

Phase 1:

detect all cucles. edge a,c,5 edge a,d,4 edge c,a,3 Cycle

Pros: single pass algorithm every edge will be processed only once.

Cycle

Cons: too many candidate path to evaluate and maintain for each edge!!

Run strongly connected component algorithm and throw away

nodes and edges which are not in a strongly connected component.

Run IRS algorithm* to find root nodes and candidates set for cycles 2) from root node.

Phase 2:

- Running DFS for root node found in phase 1 only for subgraph of root node and candidate set.
- * Information Propagation in Interaction Networks. EDBT 2017, Rohit Kumar and Toon Calders

Seventh European Business Intelligence & Big Data Summer School (eBISS 2017)

