

Comprehensive Framework for Clinical Data Fusion Anam Haq, Szymon Wilk Alberto Albelló Poznan University of Technology (PUT), Poznan, Universitat Politcnica de

 T_2

Introduction

Poland

Research Goal

Development of a comprehensive framework for clinical data (Image and Non-Image) fusion

Motivation

Development of an accurate and reliable diagnostic and therapeutic decisions models using wealth of patients information.

Challenges

Underutilization of clinical data

Significant heterogeneity of data stored in clinical information systems

Imbalance Data

Comprehensive Framework

Catalunya, Barcelona, Spain

Comprehensive Framework Key Components

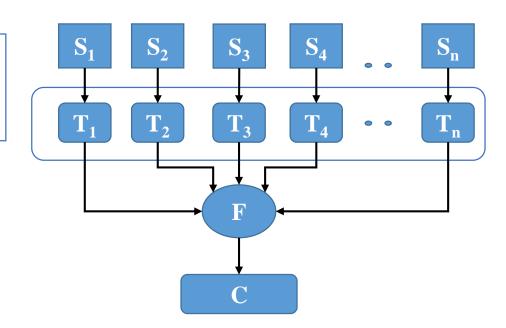
Pre-processing clinical and image data

Control model construction to handle clinical data problems

Implementing data fusion using General Fusion Framework

General Fusion Framework

Brings all data sources to a *common knowledge representation* before fusing them together.



Developed Case Studies

1. Fusion of X-ray and Clinical Records (Prediction of Type of

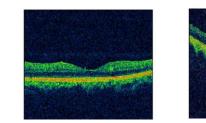
Image and Non-Image Data Analysis

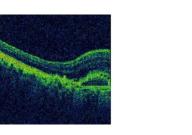
Image Data

Identify the most appropriate set of features

Non-Image Data (Clinical Records)

Identifying appropriate pre-processing techniques for clinical data to resolve issues (imbalanced, noise and heterogeneous)





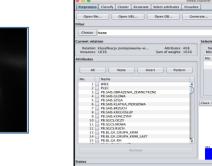
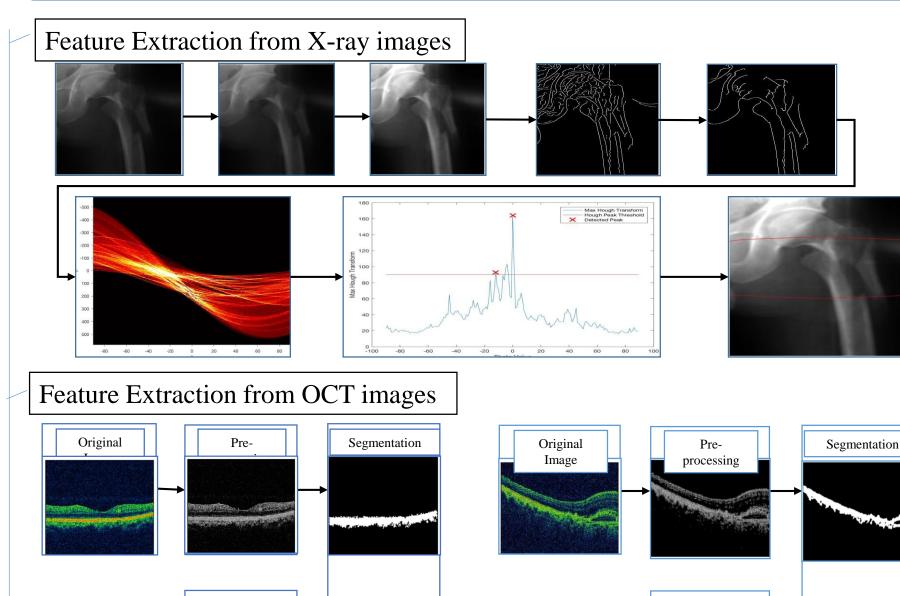


Image Analysis Flow Diagram



Treatment for Fractured Bones)

The case study follows the GFF model (combination of data approach):

- Transformation on X-ray images to extract attribute.
- Removing attributes having low or high variability from clinical data.
- Integrating both image and clinical attributes
- Building classifiers and evaluating performance with respect to accuracy

2. Selection of Appropriate Attribute from OCT Images

- This case study aims towards the analysis of OCT images:
- Extracting structural and textural properties of RPE Layer
- Building classification models for different attribute sets and evaluating their performances based on accuracy, sensitivity, specificity and geometric mean.

Case Studies Results

Performance Evaluation of Image and Clinical Data (Fractured Bones)

Classifier	Features	Overall Acc (%)	Non-Surgical (%)	Surgical (%)	G-Mean (%)
Naïve Bayes)	Image	78.64	77.50	79.40	78.44
	Clinical	78.64	62.50	88.90	74.54
	Fused	83.50	67.50	93.70	79.53
Support Vector Machine	Image	79.61	80.00	79.40	79.70
	Clinical	67.96	62.50	71.40	66.81
	Fused	80.58	77.50	82.50	80.00
Decision Tree	Image	78.64	82.50	76.20	79.29
	Clinical	66.20	60.00	69.80	64.71
	Fused	79.61	75.00	82.50	78.66
Random Forest	Image	70.87	65.00	74.60	69.60
	Clinical	75.72	57.50	87.30	70.85
	Fused	79.61	82.76	78.40	80.55

Performance Evaluation of Fusion of Structural and Textural Features(OCT IMAGES)

Abnormalities (S+T)3-RPE Layer (S)3-RPE Layer (S+T)3-NNAbnormalities (S+T)NRPE Layer (S)N	Classifier B-Nearest Neighbour B-Nearest Neighbour B-Nearest Neighbour Naïve Bayes	Acc [\%] 84.3 92.2 94.1 88.2	Sens [\%] 84.2 94.7 95.0	Spec [\%] 84.4 90.6 93.5	G-Mean 84.3 92.6 94.3
RPE Layer (S)3-RPE Layer (S+T)3-NNAbnormalities (S+T)NRPE Layer (S)N	B-Nearest Neighbour B- Nearest Neighbour Naïve Bayes	92.2 94.1	94.7	90.6	92.6
RPE Layer (S+T)3-NNAbnormalities (S+T)NRPE Layer (S)N	B-Nearest Neighbour Naïve Bayes	94.1			
RPE Layer (S+T) N Abnormalities (S+T) N RPE Layer (S) N	leighbour Jaïve Bayes		95.0	93.5	9/1 3
RPE Layer (S) N		<u>88</u> 7			J-1.3
		00.2	86.0	90.0	87.8
RPE Laver (S+T) N	laïve Bayes	94.1	95.0	93.0	94.3
	laïve Bayes	96.1	91.3	100.0	95.5
Abnormalities (S+T) P	PART	88.2	85.7	90.0	87.8
RPE Layer (S) PA	PART	92.2	90.5	93.3	91.9
RPE Layer (S+T) P	PART	94.2	91.9	96.5	93.7
Appormanties (N+1)	Support Vector Machine	86.3	88.9	84.8	86.8
RPF Laver (S)	Support Vector Machine	78.4	75.0	80.6	77.8
RDF LOVOR (N+1)	Support Vector Machine	94.1	100.0	93.7	96.8

Conclusion

- Appropriate and more reliable systems are developed using both clinical and image information.
- Data fusion improves the system accuracy.
- Selection of appropriate features from images is of great importance.
- Evaluating the performance of other data fusion methods. \succ
- Development of a "Control Model" \succ
- Development of a comprehensive clinical fusion framework that can handle associated challenges with the clinical data.

https://it4bi-dc.ulb.ac.be

Seventh European Business Intelligence & Big Data Summer School (eBISS 2017)

July 2 - July 7, 2017 Brussels, Belgium