
`

QoS-Aware Big Geospatial
Data Processing

Antonio CORRADI, Professor - Paolo BELLAVISTA, Associate Professor - Rebecca MONTANARI, Associate Professor -
Luca FOSCHINI, Assistant Professor - ALJAWARNEH Isam Mashhour, PhD Student & Research Fellow - Mobile
Middleware Research Group - DISI, University of Bologna, ITALY

Introduction & Motivation

SCENARIO

In smart cities, citizens are active collectors for
data while moving around, generating big
geospatial data, useful for monitoring smart city
phenomena

PROBLEMS

• No integrated support for geospatial data
processing in current big data ecosystems
(Spark, Hadoop, etc.)

• No domain-specific Quality of Service (QoS)-
aware support for geospatial data processing

MOTIVATION

Need for domain-specific QoS-aware integrated
solutions for big geospatial data processing

QoS Requirements:

balancing workloads between processing
elements;

preserving data geospatial-locality: objects
that are colocated in reality are loaded to
same processing elements;

processing boundary spatial objects: those
are spatial objects (point, polygon, etc.) that
reside on borders between partitions

Objectives

• Optimizing query performance in various query
types:

proximity queries

complex join queries

• Designing a novel QoS-aware big data
partitioning support

• Maximizing system’s performance gain, by
trading-off the three requirements that affect big
geospatial data processing’s QoS: load
balancing, geospatial-locality and boundary
spatial objects

Querying Support for Big
Geospatial Data Processing

Data Partitioning Support for
Big Geospatial Data Processing

Experimental Results

Experimental Results cont.

Contacts & Publications

• Contacts:

Isam Mashhour Aljawarneh, Paolo Bellavista
, Antonio Corradi, Rebecca Montanari, Luca
Foschini

{isam.aljawarneh3,paolo.bellavista,
antonio.corradi, rebecca.montanari,
luca.foschini}@unibo.it

• List of relevant publications:

Aljawarneh, I. M., et.al. (2017). Dynamic
Identification of Participatory Mobile Health
Communities. Paper presented at the
CN4IoT2017, Brindisi, Italy

Aljawarneh, I. M., et.al.(2017). Efficient
Spark-Based Framework for Big Geospatial
Data Query Processing and Analysis.
ISCC2017, Heraklion, Crete, Greece. To
Appear

Testing Datasets : we have used big geospatial
data (around 15 million records) collected through
ParticipAct1, a project of the University of
Bologna (UNIBO) that aims to study the potential
cooperation between citizens, leveraging
smartphones as a tool for interaction and
interconnection
1 http://participact.unibo.it/

Conclusions:

• Integrated and domain-dependent partitioning
and query optimization are crucial for
improving big spatial data processing’s QoS

• Our support trades-off the QoS requirements

Ongoing Works: SYNTHESIS

• Improving our query-router: integrating
additional methods for an improved routing

• Designing a query-optimizer: including query
reformulation and minimizing query complexity
(replacing joins with semi joins, etc.)

• Designing additional big geospatial data
partitioning methods

0

10

20

30

40

50

60

0 2 4 6 8 10 12

ru
n

n
in

g
 t

im
e

 (
m

in
.)

iteration

SAP

GAP

1 2 3 4

Our geospatial data partitioning support provides
two different methods:

• Self-Adaptable Partitioner (SAP):
calculates new cutting factors for a
subsequent running session learning from
previous runs. Imagining Earth flattened
out, cutting factors are analogous to vertical
partitioning line in planar geometry

Benefits: balanced load, minimized
boundary spatial objects

• Geospatial-Aware Partitioner (GAP): all
spatial objects that have the same geohash
code’s prefix are routed to the same
partition

Benefits: balanced load, preserved
geospatial-locality

Fig3: Geospatial-Aware Partitioner (GAP)

0

5000

10000

15000

20000

25000

1 2 3 4

T
im

e
 (

x
 1

0
3

M
S

)

distance(log scale)

Proximity Query Performance

geoNear MapReduce

We have designed a query-router, which takes
a prefix (extracted from key’s geohash) as a
query predicate to select appropriate partitions,
and to route the request accordingly to only
those partitions that contain relevant result-set

Fig1: Query Routing

Conclusions & Ongoing WorksFig2: Self-Adaptable Partitioner (SAP)

our MapReduce-based implementation
outperforms MongoDB’s support
(geoNear)

Using SAP, running time for processing
queries reduced significantly for
subsequent running sessions

Using GAP, processing elements have
roughly equal-sized data loads (load-
balanced)

