ERASMUS
MUNDUS

OLAP over Federated
RDF Sources

DILSHOD IBRAGIMOV, KATJA HOSE, TORBEN BACH PEDERSEN,
ESTEBAN ZIMANYI.

Outline

o Intro and Objectives

o Brief Intro to Technologies

o Our Approach and Progress

o Future Work

Business Intelligence and Semantic Web

o More and more data are published on
the Web

o Business Intelligence tools need to
analyze these data

o OnLine Analytical Processing (OLAP)
style analysis of Linked Data may help in
better decision making

o Expected challenges are data
collection, integration, data aggregation...

Objectives

Design, develop, and evaluate an approach for performing OLAP over federated
RDF sources

> Develop a framework for defining a multidimensional schema of a data cube
expressed in RDF vocabularies in a global-as-view manner for further retrieval
of data from different data sources

> Develop an approach for executing aggregate SPARQL queries over federated
RDF sources

> Design an approach to support partial/result keeping materialization to store
the results of previous requests and allow subsequent queries to execute
faster

o Extend the query processing capabilities to include the inferred knowledge in
materialized aggregate views of the linked data.

Language and Vocabularies

RDF (Resource Description Framework) is a standard model for data interchange
on the Web

SPARQL is a query language for RDF. Queries defined in terms of graph
patterns that are matched against the directed graph representing the RDF data

QB40OLAP is a special RDF vocabulary for OLAP Cubes on the Semantic Web.

VolID is an RDF Schema vocabulary for expressing metadata about RDF datasets

RDF

Statements about resources in the form of subject-predicate-object
expressions

<P1> <is called> < Jimmy Wales >
TurtleExample : <P1> rdf:type foaf:Person .
<P1> foaf:name "Jimmy Wales" .
<P1> foaf:mbox <mailto:jwales@bomis.com> .

RDF extends the linking structure of the Web to use URIs to name the
relationship between things

SPARQL Query Language

Developed by W3C Data Access Working Group

Queries defined in terms of graph patterns that are matched against the directed
graph representing the RDF data

Ex: Show name and email of a person

PREFIX foaf: <http://xmlIns.com/foaf/0.1/>

e e femat Name ____lEmail

WHERE { - — .
?person a foaf:Person. Jimmy Wales mailto:jwales@bomis.com

?person foaf:name ?name.
?person foaf:mbox ?email.

}

SPARQL Query Language

4 types of queries to retrieve (read) data:
o SELECT

o CONSTRUCT
> ASK
> DESCRIBE

QB40OLAP

QB4O0LAP is a special RDF vocabulary for OLAP Cubes on the Semantic Web
-- Data structure definition and dimensions
exqb:NorthwindDW a gb:DataStructureDefinition ;
gb:component [gb:dimension exgb:Employee] ;

-- Definition of measures

gb:component [gb:measure exgb:Quantity] .

-- Attributes

exgb4o:CompanyName a gb:AttributeProperty ;
rdfs:comment "Company Name"@en .

-- Dimension

exgb4o:CustomerDim a rdf:Property, gb:DimensionProperty .

VolD

o Vocabulary of Interlinked Datasets for expressing metadata about RDF
datasets

o General metadata (following the Dublin Core model)

o Access metadata — access to RDF data using various protocols
o Structural metadata — structure and schema of datasets
®

Description of links between datasets — relation among multiple datasets

Towards Exploratory OLAP over Linked Open
Data — A Case Study (Proposed System)

User Query SPARQL SPAROL 4{ RDF >
i ' Semantic Query | Federated Query o =
¢ Processor * Processor RDF
Query Answer MD RDF
SPAHﬂLiL WHDF ROF
Global Conceptual ’ Source Discovery/ SPARQL RDE
Schema Schema Builder

Source Discovery/Schema Builder is responsible for the discovery of data
sources and construction of the Global Conceptual Schema

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014) =

Proposed System

SPAROL

User Queary SPARQL RDF
v Semantic Query v Federated Query = =
¢ Processor Processor RDF
Query Answer e MD RDF
SRARQUL ROR RDF
b

Global Conceptual Source Discovery/ SPARQL

RDF
Schema Schema Builder

Global Conceptual Schema defines the high-level view of the system -
expressed in QB40LAP, VolD

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014) =

Proposed System

SPARQGL

User Queary
¥ Semantic Query
¢ Processor ¢
Query Answer| e
SPARUL ROF
N

Global Conceptual
Schema

MD RDF

Federated Query
Processor

SPARQL _{ RDF >

RDF

=

ROF

Source Discovery/
Schema Builder

SPARCL RDE

Semantic Query Processor (using the Global Conceptual Schema) converts a user
guery to the new format and passes it to the Federated Query Processor

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014) =

Proposed System

User Query SPARQOL SPARAE _{ RDF >
. 'y v =h.

Semantic Query Federated Query
" Processor * Processor RDF

A
Query Answer MO ROF
SPAHﬂLiL WHDF ROF
Global Conceptual ’ Source Discovery/ SPARQL RDE
Schema Schema Builder

Federated Query Processor retrieves data from several federated data sources

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014) =

~ederated Query Processor —
Motivating Example

o Earthquake in the Pacific in March 2011 ! > tsunami | D
a nuclear accident

o Hourly observation of radioactivity statistics at 47 prefectures

o Observations (March 16, 2011 — March 15, 2012) converted to RDF data
(places represented by URI from GeoNames)

o Interesting analyses:
> AVG radioactivity separately for each prefecture in Japan

> The MIN and MAX radioactivity for each prefecture (changes within one-year
observations)

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) s

Motivating Example - Observation

#observation
<http://www.kanzaki.com/works/2011/
stat/ra/20110414/p13/t08>

rdf : value "0.079" " "ms:microsv ;
ev:place <http://sws.geonames.org/
1852083/> ;

ev:time <http://www.kanzaki.com/
works /2011/stat/dim/d/
20110414TO8PT1H>

scv:dataset <http://www.kanzaki.com/

works /2011/stat/ra/set/moe>
#dimension - place

<http://sws.geonames.org/1852083/>
vcard:region "Tokyo'"Q@en ;
vcard:locality "Shinjuku"@Q@en ;
gn:lat "35.69355" ;
gn:long "139.70352"
#dimension - time
<http://www.kanzaki.com/works/2011/stat
/dim/d/20110414TO8PT1H>
rdfs:label "2011-04-14TO08";
tl:at "2011-04-14T08:00:00+09:00"
“""xsd:dateTime ;
tl:duration "PT1H""“"xsd:duration

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) s

Motivating Example - Query

Ex: Show average radioactivity values for each prefecture

SELECT ?regName (AVG (?floatRV) AS ?average) WHERE {
?s ev:place ?placelD ;
ev:time ?time ;
rdf:value ?radioValue .
SERVICE <http://lod2.openlinksw.com/sparql> {
?placelD gn:parentFeature ?regioniD . ?regionID gn:name ?regName .

}
BIND (xsd:float (?radioValue) as ?floatRV).

}
GROUP BY ?regName

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) v

Motivating Example - Results

o Virtuoso v07.10.3207, Sesame v2.7.11, and Jena Fuseki v1.0.0 (based on ARQ)
timed out

o Network traffic analyzer showed that:

> Virtuoso and Fuseki query GeoNames for each radioactivity observation
(more than 400,000 requests)

o Sesame is trying to download all triples that match the SERVICE query pattern
(more than 7.8 million triples)

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) s

Basic Strategies - Mediator Join |userRequest

o The mediator/federator receives the query from the t 1 T

o The query optimizer sends separate queries to endpo Mediator

and merges the results

o Strong point — parallelization

o Weak point — expensive for large intermediate

results/datasets

SELECT 7placeID 7radioValue WHERE {
?s ev:place 7placelD; ev:time 7time.
?s rdf:value 7radioValue.

}

RDF/XM F/XML
PARQL SPARQL

SELECT 7?placeID 7regName WHERE {
?placelID gn:parentFeature 7regionlD.
?regionlID gn:name YregName.

}

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) 1

Basic Strategies - Semi-Join

® MaanormupIe is to execute the subquery with the smallest result first and use the
retrieved results as bindings for the join variable in other subqueries (SPARQL structure)

o Efficient for highly selective subqueries (with FILTER statement)

SELECT ?regName (AVG (?radioValue) AS ?average) WHERE {
?s ev:place ?placelD. ?sev:itime ?time. ?srdf:value ?radioValue.
SERVICE <http://lod2.openlinksw.com/spargl> {
?placelD gn: parentFeature ?regionlD. ?regionlID gn:name ?regName .
}
FILTER(?radioValue < 0.08) .
} GROUP BY ?regName

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

Basic Strategies - Semi-Join (Cont)

SELECT ?placeID ?radioVal |
WHERE { | - - User Request
- ?s rdf:value ?radioVal ; | J 1

ev:place ?placeID; ev:time ?time.
 FILTER (?radioValue < 0.08) . Mediator

} | | | |
RDF>XM RDF/XML
: .Selective 2. SPARQL
SPARGL with

L
8
.'r VALUES
f‘_

R DF

DF
SELECT ?placeID ?regName
WHERE { ?placelD gn:parentFeature ?rgID. E

?rgID gn:name ?regName.
VALUES (?placelID) {
<http://sws.geonames.org/1852083/>...}

}
o Weak point - VALUES is not yet widely adopted in existing endpoints. SPARQL

1.0 compliant alternatives of UNION (or FILTER) must often be used

21

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

Basic Strategies - Partial Aggregation

o If results are grouped by SERVICE query variables, further
optimization is possible (motivating query example)
1) First group by the observation place (?placelD)

SELECT ?placelD (SUM (?floatRV) AS ?avgSUM) (COUNT (?floatRV) AS ?avgCNT)
WHERE {

?s ev:place ?placelD. ?sev:itime?time. ?srdf:value ? radioValue.

BIND (xsd:float (?radioValue) as ?floatRV).

}
GROUP BY ?placelD

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) =

Basic Strategies - Partial Aggregation

o Then execute SERVICE query

SELECT ?placelD ?regName WHERE {
?placelD gn:parentFeature ?regioniD .
?regionID gn:name ?regName .

VALUES (?placelD) {
(<http://sws.geonames.org/1852083/>)

)

User Request

' i
Mediator

RDFML RDOF/XML
PARQL SERVICE
with modified query

GROUPBY SPARQL

o Final step — join the intermediate results and compute the final result

(distributed/algebraic functions)

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) =

CODA — Cost-based Optimizer for
Distributed Aggregate Queries

o Decomposes the original query into multiple subqueries (query Q,; and
SERVICE queries Qyq ... Qop)

o Estimates query execution costs for different query execution plans

o Chooses the one with minimum costs

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

CODA - Costs

o Overall costs CQ

CQ — Cp + CC
o Communication costs C. for subquery S;:

Cc(S;)) = Cop +cs; * Cgp; Cp - communication establishing
overhead, cg, - result size, and Cy,qy - Single result transfer cost

o Processing costs

Cp = Cagg; * Cage 5 Cagg; - NUMber of aggregated observations, Cy¢q -
cost for processing a single observation

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

CODA - Estimating Constants

O Crnap - estimated using “SELECT * WHERE { ?s #p ?o . FILTER(?0 = #o0) } LIMIT
#1”; different values for #L, #0 and #p

o Cp - estimated with multiple “ASK {}” or “SELECT (1 AS ?v) {}”

0 Cycc - estimated based on multiple “SELECT COUNT(?s) WHERE {?s ?p ?0}
GROUP BY ?0”

Not perfectly accurate but the aim is to find out which execution plan is more
efficient (not to predict the execution costs)

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

CODA - Result Size Estimation

o Result size estimation - VolD statistics (dataset, property partition, class
partition)

o ¢; - total number of triples (void:triples), c,- total number of distinct subjects
(void:distinctSubjects), ¢, - total number of distinct objects (void:distinctObjects)

o Single patterns - C,..¢ for (?s ?p ?0) is given by ¢, (s ?p ?0) estimated as c;/c;,
(?s ?p o) as c;/c,, and (s ?p 0) as ¢;/(cs* c,); FILTER influence estimates

o Joins - estimates depend on shape (star vs path). Formulas taken from
“Resource Planning for SPARQL Query Execution on Data Sharing Platforms”.

type pattern cardinality card(join, partition)
card(paty)-card(pat2)

ma,x(fi_ppredA,s acp_p’r‘edB,S)

subject — subject ?s predA 70 . 7s predB 702

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) =

CODA — Motivating Example

o Decomposed into 3 queries

SELECT ?placelD (AVG(?floatRV) AS ?average) | SELECT ?placelD ?floatRV SELECT ?placelD ?regName

WHERE WHERE WHERE

{ { {
?s ev:place ?placelD. ?s ev:place ?placelD. ?placelD gn:parentFeature ?regioniD .
?s rdf:value ?radioValue . ?s rdf:value ?radioValue . ?regionID gn:name ?regName .
BIND(xsd:float(?radioValue) AS ?floatRV) . BIND(xsd:float(?radioValue) AS ?floatRV) . | }
?s ev:time ?time . ?s ev:time ?time .

} }

GROUP BY ?placelD

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) =

CODA — Motivating Example

o Estimates for Radioact query:
number of aggregated triples: 405384

estimated cost: 15

©)

o number of returned triples: 405384
o estimated cost: 129

o Estimates for GeoNames query:
o number of returned triples: 7877627

o estimated cost: 1956

o Selected plan — Partial Aggregation

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) »

Test Case — SSB as RDF

o Star Schema Benchmark converted to RDF (strongly resembling SSB tabular
structure)

o We generated data for different scale factors (1 to 5 - 6M to 30M observations,
110,5M to 547,5M triples)

o Different configurations

> two endpoints (one endpoint containing main observation data and one SERVICE
endpoint containing supporting data)

> three endpoints (two SERVICE endpoints containing supporting data)
o four endpoints (three SERVICE endpoints containing supporting data)

o All datasets and queries are available at http://extbi.cs.aau.dk/coda/

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) =

http://extbi.cs.aau.dk/coda/

Aggregate Queries in Federations of
Endpoints

o Efficiently processing aggregate queries in a federation of SPARQL endpoints

o Processing strategies (MedJoin, Semiloin, PartialAgg)

o Cost-based Optimizer for Distributed Aggregate queries (CODA)
o efficient and scalable

o chooses the best query processing plan in different situations
o significantly outperforms current state-of-the art triple stores

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) =

Improving Performance of Aggregate
Queries

o With much data to process, analytical queries need special techniques to
improve the performance of user queries

o One such technique is materializing the results of predefined queries and
answering user queries based on these results — materialized views

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015) =

Materializing RDF Views —
Data Cube Example

/ Ex:pupulah
: kos:broad i
/{ex:customer }skas.bmader_[ex.city Js e ex:state
qb:Obsarvatlnn]

ex:revenue
kos:broa skos:broader
ax.orderdate |ekos:broader ex:month ex:year]

J
i ex:yeamum

T

Materializing RDF Views —
Data Cube Example

o The total sales by month and customer state in 2010, for customers living in cities
with over 1M inhabitants

SELECT ?c_state ?month (SUM(?total) AS ?sum_total)
FROM <http://ex.com>
WHERE {
?0bs ex:OrderDate ?lo_orderdate ; ex:Customer ?customer ; ex:Revenue ?total .
?customer skos:broader ?c_city .
?c_city skos:broader ?c_state ; ex:population ?pop.
?lo_orderdate skos:broader ?month . ?month skos:broader ?year.
?year ex:value ?yearNum .
FILTER(?yearNum=2010 && ?pop > 1 000 000)

}
GROUP BY ?c_state ?month

Materializing RDF Views —
Materializing RDF Data Cube

o Materializing all views in a data cube is not K Lmn-
efficient Hierarchy Levels

o Only several views with max benefit are chosen for
materialization P . 8 v € . D

Materializing RDF Views —
Defining Views

o View query consists of 2 parts: SELECT query specifies the desired lattice node;
CONSTRUCT query creates RDF triples from SELECT query results

CONSTRUCT {
?id ex:DateMonth ?vMonth ; ex:CustomerCity ?vCity ; ex:RevenueCount ?crev ; ex:RevenueSum ?srev .

}
WHERE {
SELECT ?id ?vCity ?vMonth (SUM(?rev) AS ?srev) (COUNT(?rev) AS ?crev)

WHERE {
?li ex:OrderDate ?odate ; ex:Customer ?cust ; ex:Revenue ?rev .

?cust skos:broader ?city .
?odate skos:broader ?vMonth .
BIND(IRI(‘http://ex.org/id#’, CONCAT(?vCity, ?vMonth)) AS ?id) .

}
GROUP BY ?id ?vState ?vMonth

}

Materializing RDF Views —
Cost Model

o The cost of answering a query — number of triples contained in the materialized
view used to answer the query

o Observation is described by its n dimensions and contains m measures.

o The total number of triples in a view — (n + m) * N, where N is the number of
observations

o In each step the algorithm selects a view with maximum benefit taking into
account previously materialized views

Materializing RDF Views —
-urther Steps

o Answering Aggregate SPARQL Queries over Materialized Views with Inferred
Knowledge

o Analyzing the Performance of Complex Aggregate SPARQL Queries with
Intermediate Results Materialization

o Improving the Performance of OLAP Queries in a Federation of SPARQL Endpoints

Conclusion

o OnLine Analytical Processing (OLAP) style analysis of Linked Data may help in
better decision making (e.g. analytics applications that integrate private data
with web RDF datasets)

o The goal of the project is to improve the performance of analytical SPARQL
queries over federated RDF sources

