
OLAP over Federated
RDF Sources

DILSHOD IBRAGIMOV, KATJA HOSE, TORBEN BACH PEDERSEN,
ESTEBAN ZIMÁNYI.

o Intro and Objectives

o Brief Intro to Technologies

o Our Approach and Progress

o Future Work

2

Outline

o More and more data are published on
the Web

o Business Intelligence tools need to
analyze these data

o OnLine Analytical Processing (OLAP)
style analysis of Linked Data may help in
better decision making

o Expected challenges are data
collection, integration, data aggregation…

3

Business Intelligence and Semantic Web

Design, develop, and evaluate an approach for performing OLAP over federated
RDF sources
◦ Develop a framework for defining a multidimensional schema of a data cube

expressed in RDF vocabularies in a global-as-view manner for further retrieval
of data from different data sources

◦ Develop an approach for executing aggregate SPARQL queries over federated
RDF sources

◦ Design an approach to support partial/result keeping materialization to store
the results of previous requests and allow subsequent queries to execute
faster

◦ Extend the query processing capabilities to include the inferred knowledge in
materialized aggregate views of the linked data.

4

Objectives

RDF (Resource Description Framework) is a standard model for data interchange
on the Web

SPARQL is a query language for RDF. Queries defined in terms of graph
patterns that are matched against the directed graph representing the RDF data

QB4OLAP is a special RDF vocabulary for OLAP Cubes on the Semantic Web.

VoID is an RDF Schema vocabulary for expressing metadata about RDF datasets

5

Language and Vocabularies

Statements about resources in the form of subject-predicate-object
expressions

<P1> <is called> < Jimmy Wales >

TurtleExample : <P1> rdf:type foaf:Person .

<P1> foaf:name "Jimmy Wales" .

<P1> foaf:mbox <mailto:jwales@bomis.com> .

RDF extends the linking structure of the Web to use URIs to name the
relationship between things

6

RDF

Developed by W3C Data Access Working Group

Queries defined in terms of graph patterns that are matched against the directed
graph representing the RDF data

Ex: Show name and email of a person

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {

?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

7

SPARQL Query Language

4 types of queries to retrieve (read) data:

◦ SELECT

◦ CONSTRUCT

◦ ASK

◦ DESCRIBE

8

SPARQL Query Language

QB4OLAP
QB4OLAP is a special RDF vocabulary for OLAP Cubes on the Semantic Web
-- Data structure definition and dimensions
exqb:NorthwindDW a qb:DataStructureDefinition ;
qb:component [qb:dimension exqb:Employee] ;
-- Definition of measures
qb:component [qb:measure exqb:Quantity] .
-- Attributes
exqb4o:CompanyName a qb:AttributeProperty ;
rdfs:comment "Company Name"@en .
-- Dimension
exqb4o:CustomerDim a rdf:Property, qb:DimensionProperty .

9

VoID
o Vocabulary of Interlinked Datasets for expressing metadata about RDF
datasets
o General metadata (following the Dublin Core model)

o Access metadata – access to RDF data using various protocols

o Structural metadata – structure and schema of datasets

o Description of links between datasets – relation among multiple datasets

10

11

Source Discovery/Schema Builder is responsible for the discovery of data
sources and construction of the Global Conceptual Schema

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014)

Towards Exploratory OLAP over Linked Open
Data – A Case Study (Proposed System)

12

Global Conceptual Schema defines the high-level view of the system -
expressed in QB4OLAP, VoID

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014)

Proposed System

13

Semantic Query Processor (using the Global Conceptual Schema) converts a user
query to the new format and passes it to the Federated Query Processor

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014)

Proposed System

14

Federated Query Processor retrieves data from several federated data sources

TOWARDS EXPLORATORY OLAP OVER LINKED OPEN DATA - A CASE STUDY (BIRTE 2014)

Proposed System

o Earthquake in the Pacific in March 2011 tsunami
a nuclear accident

o Hourly observation of radioactivity statistics at 47 prefectures

o Observations (March 16, 2011 – March 15, 2012) converted to RDF data
(places represented by URI from GeoNames)

o Interesting analyses:
◦ AVG radioactivity separately for each prefecture in Japan

◦ The MIN and MAX radioactivity for each prefecture (changes within one-year
observations)

15EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

Federated Query Processor –
Motivating Example

Motivating Example - Observation

16EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

Ex: Show average radioactivity values for each prefecture

SELECT ?regName (AVG (?floatRV) AS ?average) WHERE {
?s ev:place ?placeID ;

ev:time ?time ;
rdf:value ?radioValue .

SERVICE <http://lod2.openlinksw.com/sparql> {
?placeID gn:parentFeature ?regionID . ?regionID gn:name ?regName .

}
BIND (xsd:float (?radioValue) as ?floatRV) .

}
GROUP BY ?regName

17

Motivating Example - Query

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Virtuoso v07.10.3207, Sesame v2.7.11, and Jena Fuseki v1.0.0 (based on ARQ)
timed out

o Network traffic analyzer showed that:
◦ Virtuoso and Fuseki query GeoNames for each radioactivity observation

(more than 400,000 requests)

◦ Sesame is trying to download all triples that match the SERVICE query pattern
(more than 7.8 million triples)

18

Motivating Example - Results

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o The mediator/federator receives the query from the user

o The query optimizer sends separate queries to endpoints

and merges the results

o Strong point – parallelization

o Weak point – expensive for large intermediate

results/datasets

19

Basic Strategies - Mediator Join

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Main principle is to execute the subquery with the smallest result first and use the
retrieved results as bindings for the join variable in other subqueries (SPARQL structure)

o Efficient for highly selective subqueries (with FILTER statement)

SELECT ?regName (AVG (?radioValue) AS ?average) WHERE {

?s ev:place ?placeID . ?s ev:time ?time . ?s rdf:value ?radioValue .

SERVICE <http://lod2.openlinksw.com/sparql> {

?placeID gn: parentFeature ?regionID . ?regionID gn:name ?regName .

}

FILTER(?radioValue < 0.08) .

} GROUP BY ?regName

20

Basic Strategies - Semi-Join

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Weak point - VALUES is not yet widely adopted in existing endpoints. SPARQL
1.0 compliant alternatives of UNION (or FILTER) must often be used

21

Basic Strategies - Semi-Join (Cont)

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o If results are grouped by SERVICE query variables, further
optimization is possible (motivating query example)

1) First group by the observation place (?placeID)

SELECT ?placeID (SUM (?floatRV) AS ?avgSUM) (COUNT (?floatRV) AS ?avgCNT)
WHERE {

?s ev:place ?placeID . ?s ev:time ? time . ?s rdf:value ? radioValue .

BIND (xsd:float (?radioValue) as ?floatRV) .

}

GROUP BY ?placeID

22

Basic Strategies - Partial Aggregation

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Then execute SERVICE query

SELECT ?placeID ?regName WHERE {

?placeID gn:parentFeature ?regionID .

?regionID gn:name ?regName .

VALUES (?placeID) {

(<http://sws.geonames.org/1852083/>) ….

}

}

o Final step – join the intermediate results and compute the final result
(distributed/algebraic functions)

23

Basic Strategies - Partial Aggregation

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

CODA – Cost-based Optimizer for
Distributed Aggregate Queries
o Decomposes the original query into multiple subqueries (query 𝑄𝑀 and
SERVICE queries 𝑄𝑒1 … 𝑄𝑒𝑁)

o Estimates query execution costs for different query execution plans

o Chooses the one with minimum costs

24EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Overall costs 𝐶𝑄

𝐶𝑄 = 𝐶𝑃 + 𝐶𝐶

o Communication costs 𝐶𝐶 for subquery 𝑆𝑖:

𝐶𝐶 𝑆𝑖 = 𝐶𝑂 + 𝑐𝑆𝑖 ∗ 𝐶𝑚𝑎𝑝 ; 𝐶𝑂 - communication establishing
overhead , 𝑐𝑆𝑖 - result size, and 𝐶𝑚𝑎𝑝 - single result transfer cost

o Processing costs

𝐶𝑃 = 𝑐𝑎𝑔𝑔𝑖 ∗ 𝐶𝐴𝐺𝐺 ; 𝑐𝑎𝑔𝑔𝑖 - number of aggregated observations, 𝐶𝐴𝐺𝐺 -
cost for processing a single observation

25

CODA - Costs

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

CODA - Estimating Constants
o 𝐶𝑚𝑎𝑝 - estimated using “SELECT * WHERE { ?s #p ?o . FILTER(?o = #o) } LIMIT
#L”; different values for #L, #o and #p

o 𝐶𝑂 - estimated with multiple “ASK {}” or “SELECT (1 AS ?v) {}”

o 𝐶𝐴𝐺𝐺 - estimated based on multiple “SELECT COUNT(?s) WHERE {?s ?p ?o }
GROUP BY ?o”

Not perfectly accurate but the aim is to find out which execution plan is more
efficient (not to predict the execution costs)

26EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

CODA - Result Size Estimation
o Result size estimation - VoID statistics (dataset, property partition, class
partition)

o 𝑐𝑡 - total number of triples (void:triples), 𝑐𝑠- total number of distinct subjects
(void:distinctSubjects), 𝑐𝑜 - total number of distinct objects (void:distinctObjects)

o Single patterns - 𝐶𝑟𝑒𝑠 for (?s ?p ?o) is given by 𝑐𝑡, (s ?p ?o) estimated as 𝑐𝑡/𝑐𝑠,
(?s ?p o) as 𝑐𝑡/𝑐𝑜, and (s ?p o) as 𝑐𝑡/(𝑐𝑠∗ 𝑐𝑜); FILTER influence estimates

o Joins - estimates depend on shape (star vs path). Formulas taken from
“Resource Planning for SPARQL Query Execution on Data Sharing Platforms”.

27EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Decomposed into 3 queries

28

CODA – Motivating Example

SELECT ?placeID (AVG(?floatRV) AS ?average)
WHERE
{
?s ev:place ?placeID .
?s rdf:value ?radioValue .
BIND(xsd:float(?radioValue) AS ?floatRV) .
?s ev:time ?time .

}
GROUP BY ?placeID

SELECT ?placeID ?floatRV
WHERE
{
?s ev:place ?placeID .
?s rdf:value ?radioValue .
BIND(xsd:float(?radioValue) AS ?floatRV) .
?s ev:time ?time .

}

SELECT ?placeID ?regName
WHERE
{
?placeID gn:parentFeature ?regionID .
?regionID gn:name ?regName .

}

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Estimates for Radioact query:
o number of aggregated triples: 405384

o estimated cost: 15

o number of returned triples: 405384

o estimated cost: 129

o Estimates for GeoNames query:
o number of returned triples: 7877627

o estimated cost: 1956

o Selected plan – Partial Aggregation

29

CODA – Motivating Example

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o Star Schema Benchmark converted to RDF (strongly resembling SSB tabular
structure)

o We generated data for different scale factors (1 to 5 - 6M to 30M observations,
110,5M to 547,5M triples)

o Different configurations
◦ two endpoints (one endpoint containing main observation data and one SERVICE

endpoint containing supporting data)

◦ three endpoints (two SERVICE endpoints containing supporting data)

◦ four endpoints (three SERVICE endpoints containing supporting data)

o All datasets and queries are available at http://extbi.cs.aau.dk/coda/

30

Test Case – SSB as RDF

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

http://extbi.cs.aau.dk/coda/

o Efficiently processing aggregate queries in a federation of SPARQL endpoints

o Processing strategies (MedJoin, SemiJoin, PartialAgg)

o Cost-based Optimizer for Distributed Aggregate queries (CODA)
o efficient and scalable

o chooses the best query processing plan in different situations

o significantly outperforms current state-of-the art triple stores

31

Aggregate Queries in Federations of
Endpoints

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

o With much data to process, analytical queries need special techniques to
improve the performance of user queries

o One such technique is materializing the results of predefined queries and
answering user queries based on these results – materialized views

32

Improving Performance of Aggregate
Queries

EXECUTING AGGREGATE SPARQL QUERIES IN A FEDERATION OF SPARQL ENDPOINTS (ESWC 2015)

33

Materializing RDF Views –
Data Cube Example

o The total sales by month and customer state in 2010, for customers living in cities
with over 1M inhabitants

SELECT ?c_state ?month (SUM(?total) AS ?sum_total)
FROM <http://ex.com>
WHERE {

?obs ex:OrderDate ?lo_orderdate ; ex:Customer ?customer ; ex:Revenue ?total .
?customer skos:broader ?c_city .
?c_city skos:broader ?c_state ; ex:population ?pop .
?lo_orderdate skos:broader ?month . ?month skos:broader ?year .
?year ex:value ?yearNum .
FILTER(?yearNum=2010 && ?pop > 1 000 000)

}
GROUP BY ?c_state ?month

34

Materializing RDF Views –
Data Cube Example

35

Materializing RDF Views –
Materializing RDF Data Cube
o Materializing all views in a data cube is not

efficient

o Only several views with max benefit are chosen for
materialization

o View query consists of 2 parts: SELECT query specifies the desired lattice node;
CONSTRUCT query creates RDF triples from SELECT query results

CONSTRUCT {
?id ex:DateMonth ?vMonth ; ex:CustomerCity ?vCity ; ex:RevenueCount ?crev ; ex:RevenueSum ?srev .

}
WHERE {

SELECT ?id ?vCity ?vMonth (SUM(?rev) AS ?srev) (COUNT(?rev) AS ?crev)
WHERE {

?li ex:OrderDate ?odate ; ex:Customer ?cust ; ex:Revenue ?rev .
?cust skos:broader ?city .
?odate skos:broader ?vMonth .
BIND(IRI(‘http://ex.org/id#’, CONCAT(?vCity, ?vMonth)) AS ?id) .

}
GROUP BY ?id ?vState ?vMonth

}

36

Materializing RDF Views –
Defining Views

o The cost of answering a query – number of triples contained in the materialized
view used to answer the query

o Observation is described by its n dimensions and contains m measures.

o The total number of triples in a view – (n + m) * N, where N is the number of
observations

o In each step the algorithm selects a view with maximum benefit taking into
account previously materialized views

37

Materializing RDF Views –
Cost Model

o Answering Aggregate SPARQL Queries over Materialized Views with Inferred
Knowledge

o Analyzing the Performance of Complex Aggregate SPARQL Queries with
Intermediate Results Materialization

o Improving the Performance of OLAP Queries in a Federation of SPARQL Endpoints

38

Materializing RDF Views –
Further Steps

o OnLine Analytical Processing (OLAP) style analysis of Linked Data may help in
better decision making (e.g. analytics applications that integrate private data
with web RDF datasets)

o The goal of the project is to improve the performance of analytical SPARQL
queries over federated RDF sources

39

Conclusion

