Modelling Data Warehouses with Multiversion and Temporal Functionality

Waqas Ahmed^{+*}, Esteban Zimányi⁺, Robert Wrembel^{*}

Department of Computer and Decision Engineering (CoDE), Université Libre De Bruxelles,
 *Institute of Computing Science, Poznań University of Technology

waqas.ahmed@ulb.ac.be

1. Introduction

- Data Warehouses (DWs) integrate data from heterogeneous external data sources (EDSs)
- EDSs evolve in content and structure
- The changes in EDSs must be propagated into the DWs

2. Available Approaches

- Slowly Changing Dimensions (SCDs) A technique to keep the content history of dimension members
 - Three basic types of SCD, each with a different method of handling the changes

6. Cross Version Queries

- Imply a time interval during which more than one schema versions are valid
- Not trivial to answer because data stored across multiple versions may have different structure

Three possible cases of a query implying the value of a schema element present in the current version only

7. Proposed Solution

- Temporal Data Warehouses Track the evolution history of attributes by associating orthogonal time dimension(s) to each record
- Multiversion Data Warehouses Consist of a sequence of DW versions
 - Every change creates a new DW version

3. Drawbacks of Available Approaches

- 1. Slowly Changing Dimensions
 - No or incomplete history
 - No support for schema changes
- 2. Temporal Data Warehouses
 - No support for schema changes
- 3. Multiversion Data Warehouses
 - Version management overhead
 - Resource requirements
 - Querying is not trivial

4. Motivations

 Querying data stored in multiple schema versions is not trivial

Architecture of the proposed system to answer the cross-version queries

8. Conclusions

- 1. Combining the multiversion and temporal approaches is the natural solution to the problem of managing content and structure evolution in DWs
- 2. A model is needed that could support both the schema versioning and management of temporal evolution of content within the schema version, and

- 2. Partial results are better than no results at all
- 3. There is a need for a DW model that could support schema versioning and keep track of the history of data within each version

5. Objectives

Design, implement, and evaluate a data warehouse model that can support multiple schema versions and track the temporal evolution of data within its versions. 3. A query mechanism is required to answer the crossversion queries

References

- M. Golfarelli and S. Rizzi. A survey on temporal data warehousing.
 International Journal of Data Warehousing and Mining, 5(1):1-17, 2009.
- W.Ahmed, E. Zimányi and R. Wrembel. A logical model for multiversion data warehouses. DaWak 2014, Munnich, Germany.
- W. Ahmed and E. Zimányi, *On querying multiversion data warehosues*, ADBIS 2015, Poitiers, France

