

# OLAP Query personalisation and recommendation: an introduction

Patrick Marcel, Université François Rabelais Tours Laboratoire d'Informatique

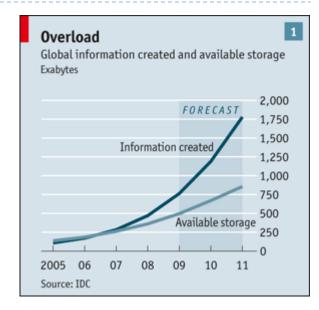
# Outline

- Introduction
- Query personalisation
  - Basics on preferences
  - Overview of existing approaches in relational databases
  - Existing approaches in multidimensional databases
- Query recommendation
  - Basics on recommender systems
  - Overview of existing approaches in relational databases
  - Existing approaches in multidimensional databases
- Conclusion
- Bibliography

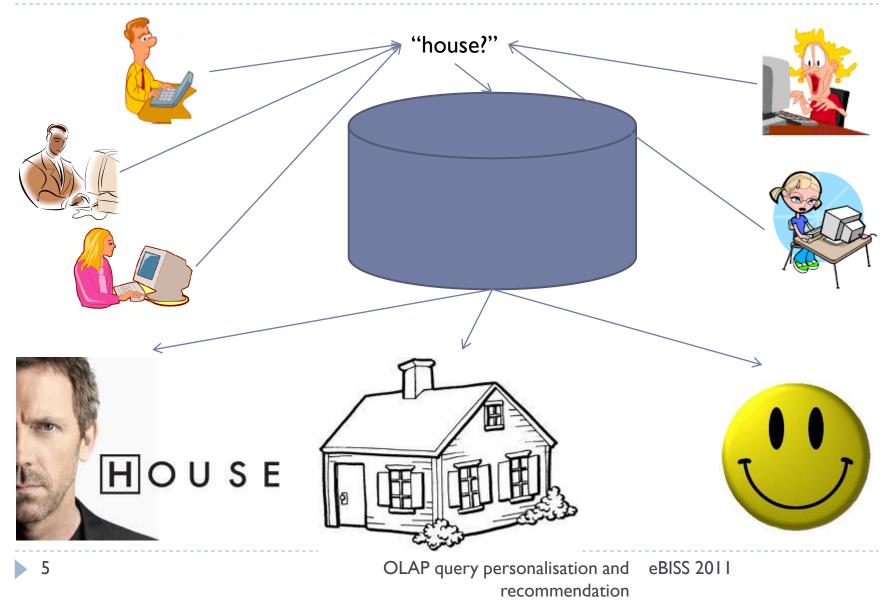
#### Introduction

#### Why personalisation or recommendation?

- Mankind created 150 exabytes (billion gigabytes) of data in 2005. In 2010, it will create 1,200 exabytes.
  - The Economist, The Data Deluge, Feb 25th 2010
- Databases should be more userfriendly [Jagadish & al., 2007]
  - Instances are huge, schemas are complex
  - The user may not know SQL, the schema, the values



### Why personalisation?



# Why personalisation in database?

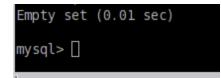
#### Given a database query q

- > Am I always happy with the result?
  - Too many answers
    - □ How to focus on the most relevant?
  - Too few answers
    - $\Box$  How to soften hard constraints?

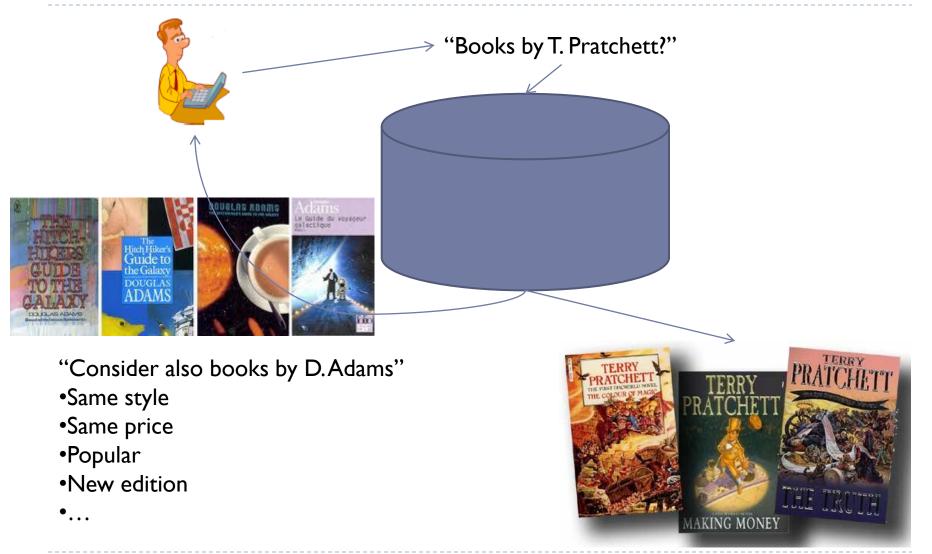
#### Adding preferences to queries

- If too many answers
  - Rank them to focus on the preferred ones
- If too few answers
  - Consider selections as preferences, not constraints

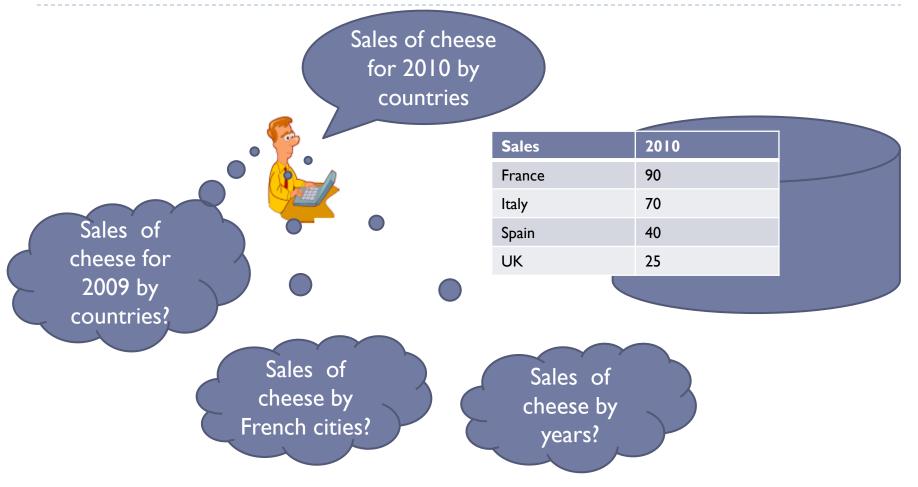
|        | 852        | / 18         | 038T |
|--------|------------|--------------|------|
|        | 869        | 718          | 6381 |
|        | 819        | 718          | 6381 |
|        | 968        | 718          | 6381 |
|        | 519        | 718          | 6381 |
| +      | +          | +            | +    |
| 86837  | rows in se | et (0.32 sec | :)   |
|        |            |              |      |
| mysql> | > []       |              |      |
|        |            |              |      |



### Why recommendation?



## Why recommendation in databases?



# Scope

#### Personalisation

A process that, given a database query q and some profile, computes another query q' ⊂ q that has an added value for the user

#### Recommendation

A process that, given a database query q and some profile, computes another query q' ⊄ q, q ⊄ q' that has an added value for the user

#### What is outside the scope

- Other forms of query transformation (relaxation, completion, etc.)
- Non relational data types (XML, etc.)
- Implementation and evaluation issues

# Categorisation: [Golfarelli & Rizzi, 2010]

- Formulation effort:
  - How profile is specified
- Prescriptiveness:
  - How profile is incorporated to the query

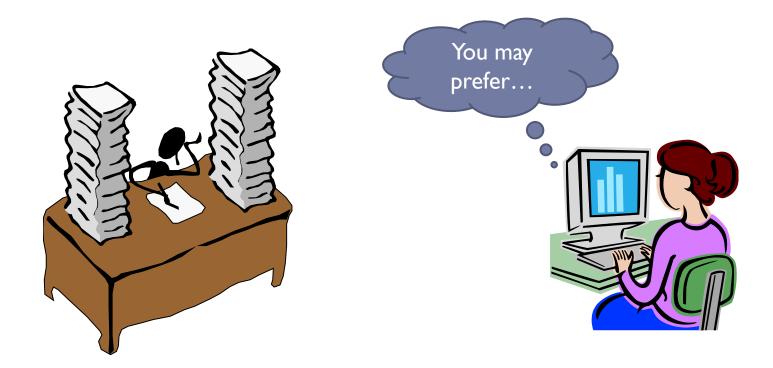
#### Proactiveness:

How profile affects query evaluation

#### Expressiveness:

How complex profile is

# Formulation effort



#### Formulation effort:

- Profile elements manually specified for each query, or
- Profile inferred from the context and/or past actions.

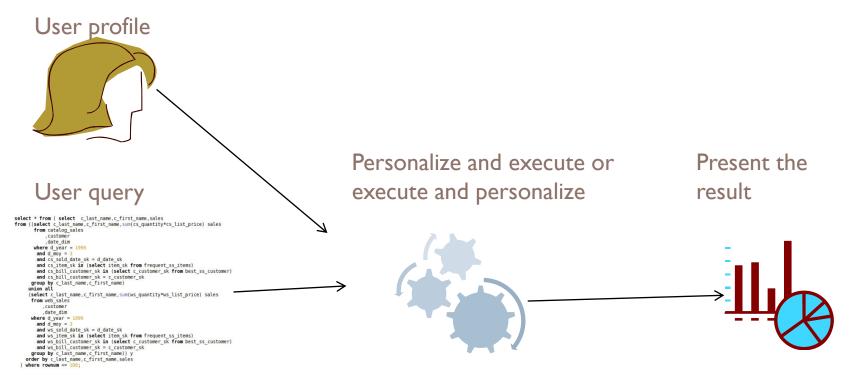
#### Prescriptiveness



#### Prescriptiveness:

- Profile elements added as hard constraints to a query, or
- Tuples that satisfy as much profile as possible are returned even if no tuples satisfies all the profile.

# Proactiveness (1)

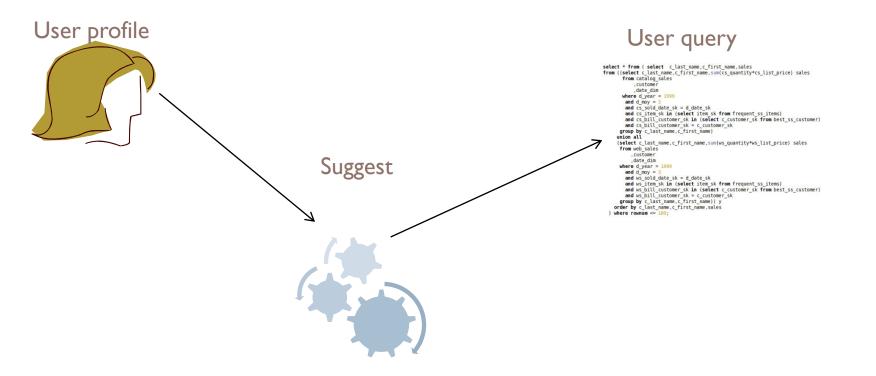


#### Proactiveness:

- 1. Change the current query before execution or post process its results, or
- 2. Suggest new queries without executing them.

D

# Proactiveness (2)



#### Proactiveness:

- 1. Change the current query before execution or post process its results, or
- 2. Suggest new queries without executing them.

### Expressiveness

 I prefer movies directed by David Lynch

- I prefer movies directed by David Lynch
- But I also prefer short movies
- I like Julia Roberts more than Nicole Kidman
- Well it depends if it is a drama or a comedy
- Length is more important than the director
- Except if it is a comedy

#### Query personalisation

#### Basics on preferences

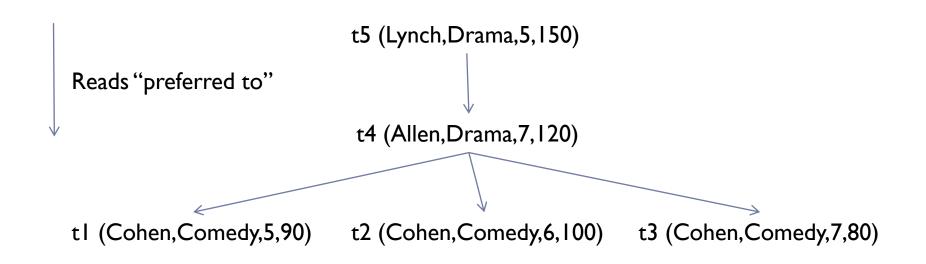
### Example

| Movies | Author | Genre  | Price | Duration |
|--------|--------|--------|-------|----------|
| tl     | Cohen  | Comedy | 5     | 90       |
| t2     | Cohen  | Comedy | 6     | 100      |
| t3     | Cohen  | Comedy | 7     | 80       |
| t4     | Allen  | Drama  | 7     | 120      |
| t5     | Lynch  | Drama  | 5     | 150      |

"I prefer Lynch movies over Allen's and Allen movies over Cohen's"

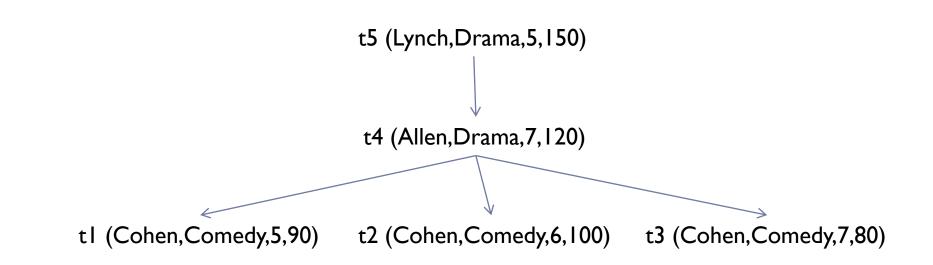
- Then t5 preferred to t4 and t4 preferred to t1, t2, t3
- Nothing is said e.g., for t1 and t2, neither for t1 and t3

# Example of representation



- "I prefer Lynch movies over Allen's and Allen movies over Cohen's"
  - t5 > t4
     Prefers(t5,t4)
  - t4 > t1, t4 > t2, t4 > t3
    Prefers(t4,t1), Prefers(t4,t2), Prefers(t4,t3)

# Another formulation



- "I like Lynch: score=0.9"
- "I like Allen: score=0.8"
- "I like Cohen: score=0.5"

# Qualitative versus quantitative

#### Qualitative Approaches

- Relative preferences of the form I like A better than B
- Based on Partial ordering
  - I like A better than B iff (A > B) where ">" is a partial ordering
- Quantitative Approaches
  - Absolute preferences of the form I like A to a specific degree
  - Based on Scoring / Utility Functions
    - ▶ I like A better than B iff u(A) > u(B) where "u" is a scoring function
- However, not every intuitively plausible preference relation can be captured by scoring functions
  - But scoring functions can express the "intensity" of the preference

#### Preferences are usually SPO

- Strict Partial Order (SPO)
  - A binary relation ">" over a set O which is
    - Irreflexive:  $\neg(a > a)$
    - Asymmetric: If  $(a \neq b)$  and (a > b) then  $\neg(b > a)$
    - Transitive: If (a > b) and (b > c) then (a > c)

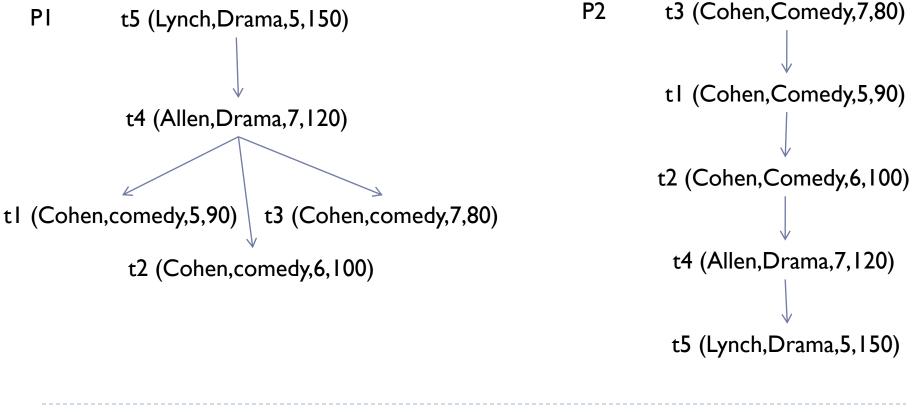
#### Preferences are usually assumed to be SPO

- I like "a" better than "b" if (a > b)
- ▶ I consider a and b indifferent (a ~ b) if  $\neg(a > b)$  and  $\neg(b > a)$

Preference composition

PI:"I prefer Lynch's over Allen's and Allen's over Cohen's"

P2:"I also prefer shorter movies"



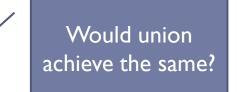
# Example of quantitative composition

#### "I prefer Lynch's over Allen's and Allen's over Cohen's"

- "I like Lynch with score<sub>PI</sub>=0.9"
- "I like Allen with score<sub>PI</sub>=0.8"
- "I like Cohen with score<sub>PI</sub>=0.5"
- "I also prefer shorter movies"
  - "I like (duration=80) with score<sub>P2</sub>=1","I like (duration=90) with score<sub>P2</sub>=0.9", ...,"I like (duration=150) with score<sub>P2</sub>=0.6"
- Combination can be with weighted summation
  - Score<sub>f(P1,P2)</sub>(t<sub>i</sub>)=x score<sub>P1</sub>(t<sub>i</sub>) + (1-x) score<sub>P2</sub>(t<sub>i</sub>)

# Intersection P1 $\cap$ P2 (t > $\cap$ t') if (t > P1 t') and (t > P2 t')

- "I prefer Lynch's over Allen's and Allen's over Cohen's"
- "I also prefer shorter movies"



t3 (Cohen, Comedy, 7, 80)

tl (Cohen, Comedy, 5, 90)

t2 (Cohen, Comedy, 6, 100)

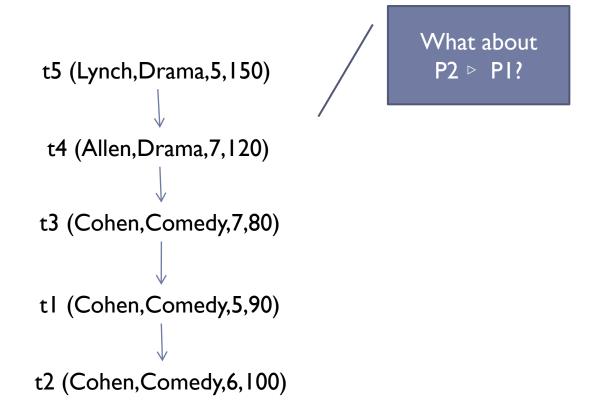
t4 (Allen, Drama, 7, 120)

t5 (Lynch, Drama, 5, 150)

#### Prioritization P1 $\triangleright$ P2 (t ><sub>\bircc</sub> t') if (t ><sub>P1</sub> t') or (¬(t' ><sub>P1</sub> t) and (t ><sub>P2</sub> t'))

"I prefer Lynch's over Allen's and Allen's over Cohen's"

"I also prefer shorter movies"

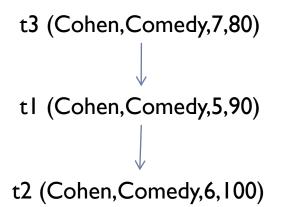


 $\begin{array}{l} \textbf{Pareto P1} \bigotimes \textbf{P2} \\ \textbf{(t } \texttt{>}_{\otimes} \textbf{t') if ((t \texttt{>}_{P1} \textbf{t'}) and (t \texttt{>}_{P2} \textbf{t' or t } \texttt{~}_{P2} \textbf{t'}))} \\ \textbf{or ((t \texttt{>}_{P2} \textbf{t'}) and (t \texttt{>}_{P1} \textbf{t' or t } \texttt{~}_{P1} \textbf{t'}))} \end{array}$ 

- "I prefer Lynch's over Allen's and Allen's over Cohen's"
- "I also prefer shorter movies"

t5 (Lynch,Drama,5,150)

t4 (Allen, Drama, 7, 120)



#### Existing approaches

In relational databases

# Two approaches

#### Preference operators

- Use explicit preference operators in queries
  - Winnow [Chomicki, 2003]
  - Preference SQL [Kießling, 2002]
    - $\hfill\square$  High formulation effort , not prescriptive, not proactive, high expressiveness
  - Skyline [Börzsönyi & al., 2001]

#### Query expansion

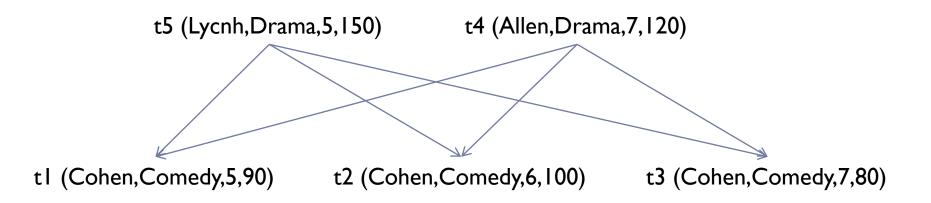
- Rewrite regular queries with elements of a profile
  - [Koutrika & Ioannidis, 2004]
    - □ Low formulation effort, prescriptive, not proactive, low expressiveness

# Winnow / BMO (Best-Matches-Only)

#### Given

- A relation r of schema sch(r)
- A preference C over sch(r) defining a preference relation ><sub>C</sub>
- The winnow operator, denoted w<sub>C</sub>, is defined by:
   w<sub>C</sub>(r) = { t ∈ r | (∄ t' ∈ r)(t' ><sub>C</sub> t) }
- Can be used to order query results
  - The answer to q can be partitioned according to C
    - ▶  $q = w_C(q) \cup w_C(q w_C(q)) \cup ...$

#### Example



- Model C is
  - "I prefer drama"
- What are my most preferred affordable movies?
  - $w_C(\sigma_{Price < 7}(Movies))$
- Answer is
  - First: t5
  - Then: t1,t2

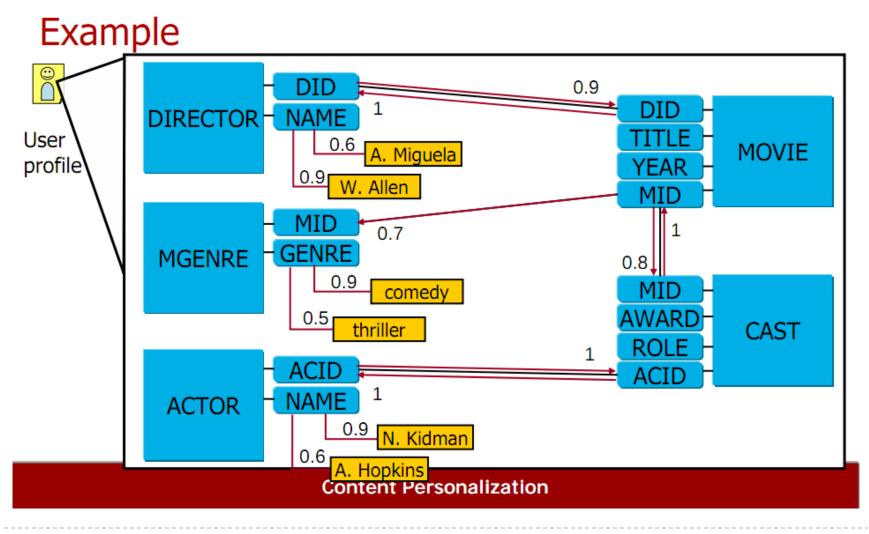
# Preference SQL [Kießling, 2002]

- Built-in Preference Constructors
  - SELECT \* FROM Movies
     PREFERING HIGHEST(Duration)
    - $(x >_{HIGHEST} y)$  if x > y
  - SELECT \* FROM Movies
     PREFERING genre IN ('Drama','Thriller')
     (x ><sub>IN ('Drama','Thriller')</sub> y) if x ∈{'Drama','Thriller'} and y ∉{'Drama','Thriller'}
  - SELECT \* FROM Movies
     PREFERING Duration AROUND 90
    - $(x >_{AROUND(90)} y)$  if |x 90| < |y 90|

# Preference SQL

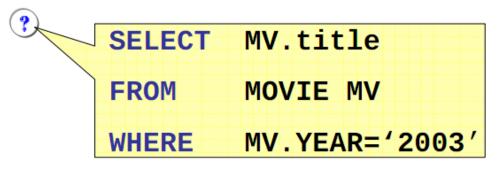
- How to assemble Complex Preferences
  - With Pareto Composition
    - SELECT \* FROM Movies
       PREFERING HIGHEST(Duration)
       AND Genre IN ('Drama','Thriller')
  - With Prioritized Composition
    - SELECT \* FROM Movies
       PREFERING HIGHEST(Duration)
       CASCADE Genre IN ('Drama','Thriller')

#### Query expansion [Koutrika & Ioannidis, 2005]



#### User query

#### Example



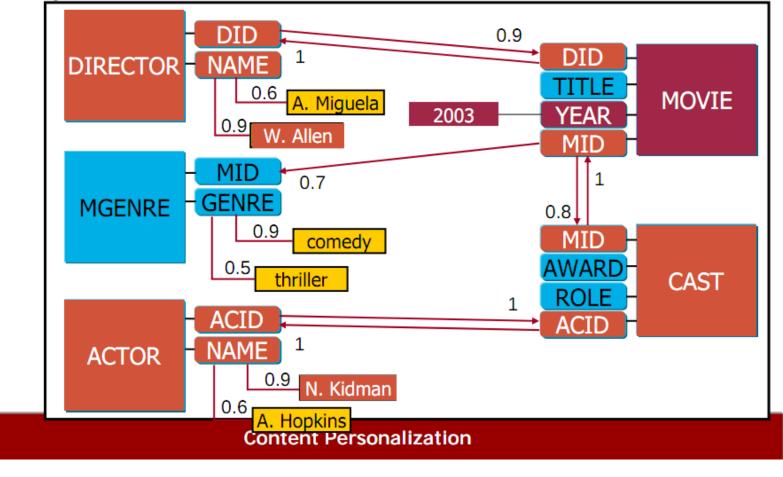
Results should satisfy at least L of the K preferences

#### Parameters for personalization: K=2, L=1

**Content Personalization** 

# Using the profile

#### **Example: Preference Selection**



Expanding the query

Example: Personalized Query

• Query rewriting [70]

SELECT MV.title

FROM MOVIE M, CAST C, ACTOR A, DIRECTOR D

WHERE MV.YEAR='2003'

and (M.DID=D.DID and D.NAME='W.Allen') or

(M.MID=C.MID and C.ACID=A.ACID and

A. NAME='N.Kidman')

**Content Personalization** 

#### Existing approaches

In multidimensional databases

#### Peculiarities of data warehouses

#### Data warehouses are particular databases

- Read mostly instance, with an inflationist evolution
- Schema inducing a particular topology (lattice of cuboids)
- Shared in a multi-user environment
- OLAP queries over data warehouses
  - Expressed in a dedicated query language (MDX)
  - May produce large results, visualised as crosstabs
  - Are grouped into sessions having an analytical goal
  - Are written based on:
    - Past results of the session
    - User expectations

## Two existing approaches

- [Bellatreche & al. 2005]
  - Inspired by Koutrika & Ioannidis
  - Query expansion for computing preferred visualisations
    - Low formulation effort, prescriptive, not proactive, low expressiveness

#### [Golfarelli & Rizzi, 2009]

- Inspired by Kießling
- Preference operators adapted to the multidimensional context
  - High formulation effort, not prescriptive, not proactive, high expressiveness

[Bellatreche & al. 2005]

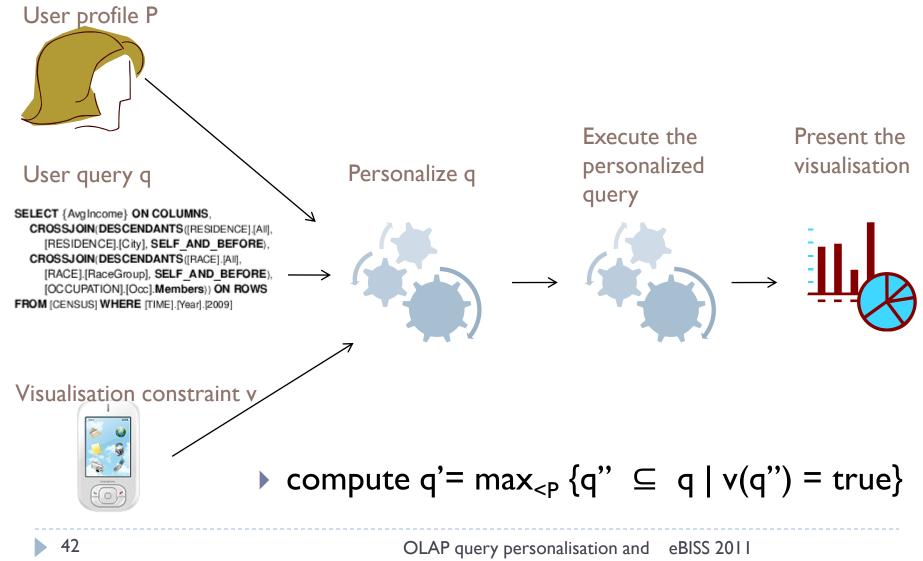
SELECT CROSSJOIN({City.Tours, City.Orleans}, {Category.Members}) ON ROWS {2003, 2004, 2005, 2006} ON COLUMNS FROM SalesCube WHERE (Measures.quantity)

#### Visualization depends on the user's profile

|         |       | 2003 | 2004 | 2005 | 2006 |
|---------|-------|------|------|------|------|
| Tours   | Drink | 77   | 54   | 55   | 33   |
|         | Food  | 89   | 61   | 30   | 41   |
| Orleans | Drink | 25   | 50   | 49   | 32   |
|         | Food  | 33   | 44   | 59   | 27   |

|       |       | 2003 | 2004 | 2005 | 2006 |
|-------|-------|------|------|------|------|
| Tours | Drink | 77   | 54   | 55   | 33   |
|       | Food  | 89   | 61   | 30   | 41   |
|       | Cloth | 55   | 50   | 51   | 52   |
|       | Shoes | 21   | 22   | 29   | 27   |

### Problem formulation



recommendation

## Example of personalization (1)

The query:

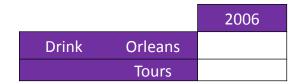
#### SELECT CROSSJOIN({City.Tours, City.Orleans}, {Category.Members}) ON ROWS {2003, 2004, 2005, 2006} ON COLUMNS FROM SalesCube WHERE (Measures.quantity)

**Preferences:** 

Time < Location and Product < Location 2002 < 2003 < 2004 < 2005 < 2006 Electronics < shoes < cloth < food < drink Quantity < price

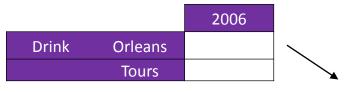
Constraint: 2 axes, no more than 4 positions on each axis

## Example of personalization (2)



Step I The most preferred references

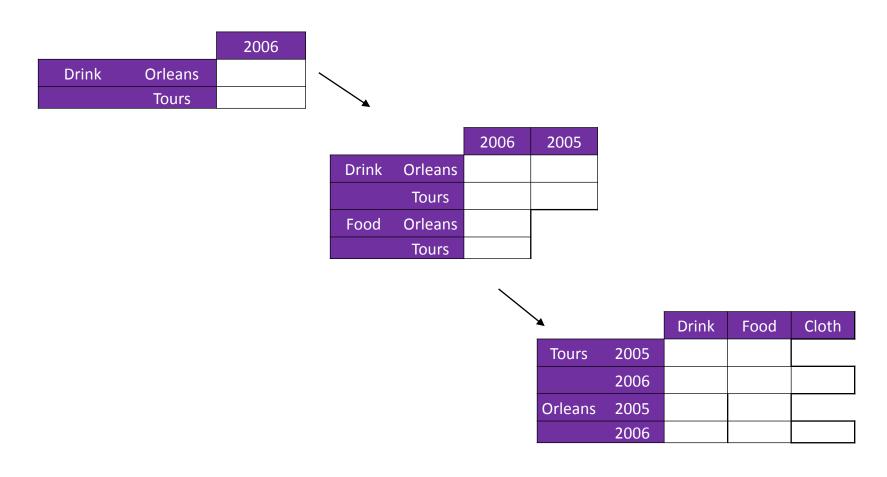
## Example of personalization (3)



Step 2 The second most preferred references

|       |         | -    |      |
|-------|---------|------|------|
|       |         | 2006 | 2005 |
| Drink | Orleans |      |      |
|       | Tours   |      |      |
| Food  | Orleans |      |      |
|       | Tours   |      |      |

## Example of personalization (4)



Step 3: the next most preferred references

OLAP query personalisation and eBISS 2011 recommendation

#### Example of personalization (5)

... finally, the constructed query is

#### SELECT CROSSJOIN({City.Tours, City.Orleans}, {Category.Food, Category.drink}) ON ROWS {2003, 2004, 2005, 2006} ON COLUMNS

FROM SalesCube WHERE (Measures.quantity)

|         |       | 2003 | 2004 | 2005 | 2006 |
|---------|-------|------|------|------|------|
| Tours   | Drink | 77   | 54   | 55   | 33   |
|         | Food  | 89   | 61   | 30   | 41   |
| Orleans | Drink | 25   | 50   | 49   | 32   |
|         | Food  | 33   | 44   | 59   | 27   |

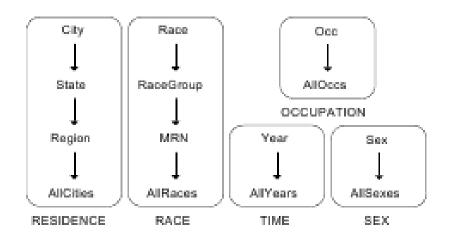
## [Golfarelli & Rizzi 2009,2011]

#### Adaptation of preference constructors to a multidimensional context

- Taking into account hierarchies
- Preferences can be expressed over levels and thus over cuboids
- Preferences can be expressed over measures
- Composition: Prioritization and Pareto

SELECT {AvgIncome} ON COLUMNS, CROSSJOIN(DESCENDANTS([RESIDENCE].[AII], [RESIDENCE].[City], SELF\_AND\_BEFORE), CROSSJOIN(DESCENDANTS([RACE].[AII], [RACE].[RaceGroup], SELF\_AND\_BEFORE), [OCCUPATION].[Occ].Members)) ON ROWS FROM [CENSUS] WHERE [TIME].[Year].[2009] PREFERRING AvgIncome BETWEEN 500 AND 1000 AND RESIDENCE CONTAIN State

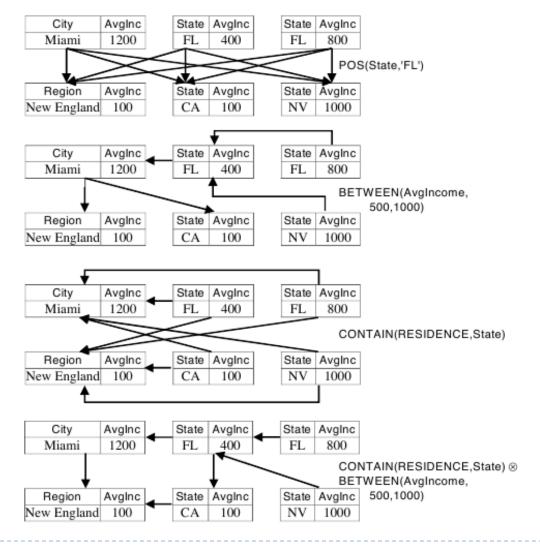
## Example of constructors



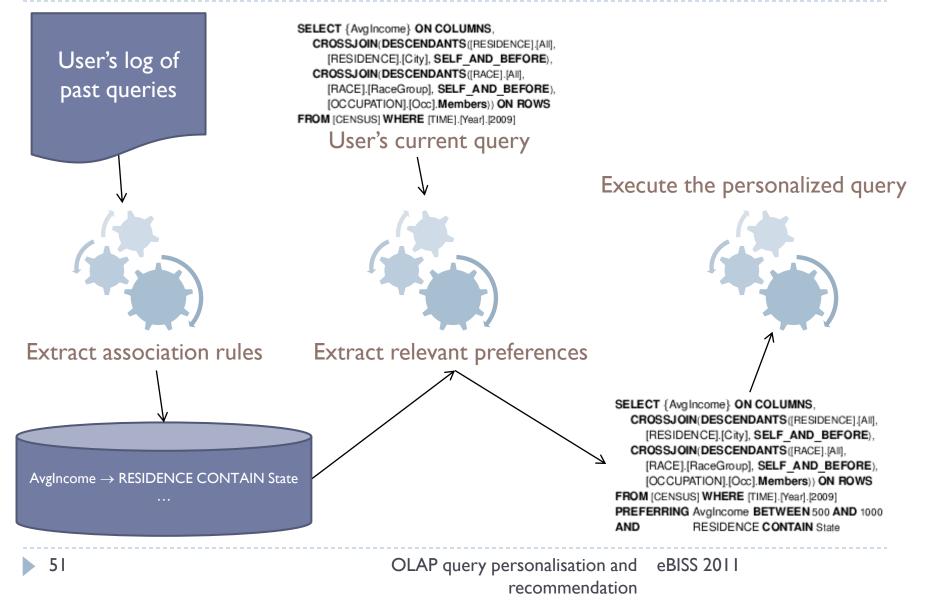
#### POS(City,LA)

- (LA,all,2010,F,all) > (NY,all,all,all,all)
   (California,all,2009,all,all) > (NY,all,2010,all,all)
- CONTAIN(RESIDENCE,City)
  - (LA,all,2010,F,all) > (California,all,2009,all,all)

#### Example of dominations



#### Improving proactiveness [Aligon & al, 2011]



#### Query recommendation

## Basics of recommender systems

#### Recommender systems



## The basic model

| interest | ltem l | ltem 2 | ltem 3 | ••• | ltem m |
|----------|--------|--------|--------|-----|--------|
| User I   | 0.3    |        | 0.9    |     | 0.7    |
| User 2   |        | 0.4    | 0.8    |     | 0.6    |
| User 3   |        |        |        |     |        |
|          |        |        |        |     |        |
| User n   | 0.9    | 0.5    |        |     | 0.2    |

- A matrix customers \* items recording the interests
- Recommend the items having highest ratings
- But
  - Ratings are hard to find
  - Matrix is huge and sparse
  - Everyone is a bit eccentric [WSDM 2010]

## Three classical approaches

#### Content-based

Recommend items similar to those highly rated

#### Collaborative

- Recommend items highly rated by similar users
- Hybrid
  - Combine content-based and collaborative
- A lot of works in the areas of e-commerce, Web, IR, ...
  - See e.g., "Recommender systems handbook", Springer, 2011

#### Example of content-based recommendations 1. build item profiles

|        | Donuts | Duff | Apple | Tofu | Water | Bud | Ribs |
|--------|--------|------|-------|------|-------|-----|------|
| Homer  | 0.9    | 0.8  |       |      |       | 0.7 |      |
| Marge  |        |      | 0.8   |      | 0.6   |     |      |
| Bart   | 0.7    | 0.6  | 0.1   |      |       |     | 0.8  |
| Lisa   | 0.2    |      |       | 0.8  | 0.6   |     |      |
| Maggie | 0.6    |      |       | 0.5  | 0.6   |     |      |

- Features: contains sugar, ok for diet
- Profile of Donuts: (0.9,0)
- Profile of Duff: (0.6,0.1)
- Profile of Apple: (0.4,0.6)
- Profile of Tofu: (0,0.9)

# Example of content-based recommendations 2. build user profiles

|        | Donuts | Duff | Apple | Tofu | Water | Bud | Ribs |
|--------|--------|------|-------|------|-------|-----|------|
| Homer  | 0.9    | 0.8  |       |      |       | 0.7 |      |
| Marge  |        |      | 0.8   |      | 0.6   |     |      |
| Bart   | 0.7    | 0.6  | 0.1   |      |       |     | 0.8  |
| Lisa   | 0.2    |      |       | 0.8  | 0.6   |     |      |
| Maggie | 0.6    |      |       | 0.5  | 0.6   |     |      |

- Features: contains sugar, ok for diet
- Profile of Homer: (0.9\*(0.9,0) + 0.8\*(0.6,0.1) ...)/3
  - ► = (0.8,0.1)
- Profile of Lisa: (0.3,0.8)

. . .

# Example of content-based recommendations 3. compare profiles to score

|        | Donuts | Duff | Apple | Tofu | Water | Bud | Ribs |
|--------|--------|------|-------|------|-------|-----|------|
| Homer  | 0.9    | 0.8  |       |      |       | 0.7 |      |
| Marge  |        |      | 0.8   |      | 0.6   |     |      |
| Bart   | 0.7    | 0.6  | 0.1   |      |       |     | 0.8  |
| Lisa   | 0.2    |      |       | 0.8  | 0.6   |     |      |
| Maggie | 0.6    |      |       | 0.5  | 0.6   |     |      |

- Compare Homer profile to Apple profile:
  - cosine((0.8,0.1),(0.4,0.6)) =0.33
- Compare Homer profile to Tofu profile
  - cosine((0.8,0.1),(0,0.9)) =0.1
- • •
- In the end, recommend Ribs to Homer, Apple to Lisa

#### Example of collaborative recommendations 1. find similar users

|        | Donuts | Duff | Apple | Tofu | Water | Bud | Ribs |
|--------|--------|------|-------|------|-------|-----|------|
| Homer  | 0.9    | 0.8  |       |      |       | 0.7 |      |
| Marge  |        |      | 0.8   |      | 0.6   |     |      |
| Bart   | 0.7    | 0.6  | 0.1   |      |       |     | 0.8  |
| Lisa   | 0.2    |      |       | 0.8  | 0.6   |     |      |
| Maggie | 0.6    |      |       | 0.5  | 0.6   |     |      |

#### Find similar users

- Compare Homer and Marge
  - Cosine((0.9,0.8,0,...),(0,0,0.8,...))
- Compare Homer and Bart
  - Cosine((0.9,0.8,0,...),(0.7,0.6,0.1,...))

. . .

# Example of collaborative recommendations 2. compute scores

|        | Donuts | Duff | Apple | Tofu | Water | Bud | Ribs       |
|--------|--------|------|-------|------|-------|-----|------------|
| Homer  | 0.9    | 0.8  |       |      |       | 0.7 | <i>∧</i> * |
| Marge  |        |      | 0.8   |      | 0.6   |     |            |
| Bart   | 0.7    | 0.6  | 0.1   |      | /     |     | 0.8        |
| Lisa   | 0.2    |      |       | 0.8  | 0.6   |     |            |
| Maggie | 0.6    |      |       | 0.5  | 0.6   |     |            |

- Recommend items highly rated by similar users
  - Rating weighted with similarity score
    - Cosine(Homer,Bart)

#### Existing approaches

In relational databases

#### How to recommend? [Stefanidis & al., 2009]

- Use current state of the database
  - Find correlated attributes, most frequent values, etc.
- Use history (query log)
  - Compute similarities among users, similarities among queries
- Use external data
  - E.g., wikipedia, etc.

#### YMAL [Stefanidis & al., 2009] Example

#### Local analysis

- Select title, genre from Movies where actor='C. Lee'
- The result has a lot of genre='fantastic'
- Recommend:
  - Select title, genre from Movies where genre='fantastic'

#### Global analysis

- Value 'Allen' of attribute Director is correlated with value 'Comedy' of attribute Genre
- Select \* from Movies where director='Allen'
- Recommend:
  - Select \* from Movies where genre='Comedy'

## QueRIE [Chatzopoulou & al., 2009]

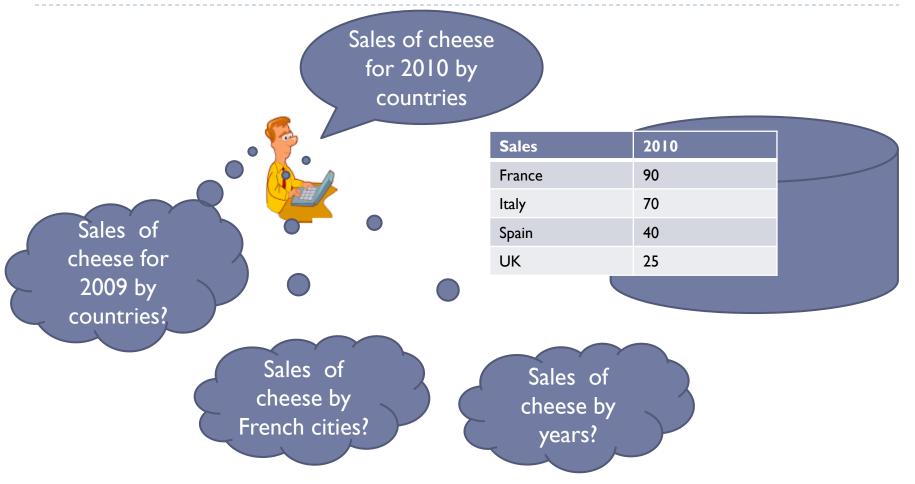
|           | Tuple I | Tuple 2 | Tuple 3 | ••• | Tuple n |
|-----------|---------|---------|---------|-----|---------|
| Session I | I       | 0       | 0       |     | 0       |
| Session 2 | 0       | I       | I       |     | I       |
| Session 3 | 0       | 0       | 0       |     | I       |
|           |         |         |         |     |         |
| Session m | I       | I       | 0       |     | 0       |

- Current session  $S_c = (1, ..., 0)$
- Find session S the most similar to S<sub>c</sub> using cosine
- Recommend the query of S that is the most similar to  $S_c$

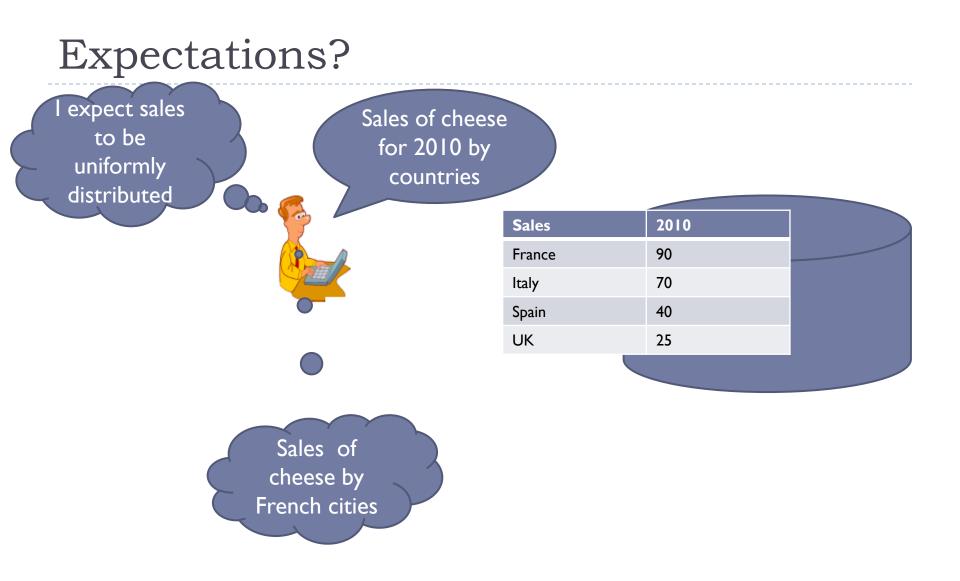
#### Existing approaches

In multidimensional databases

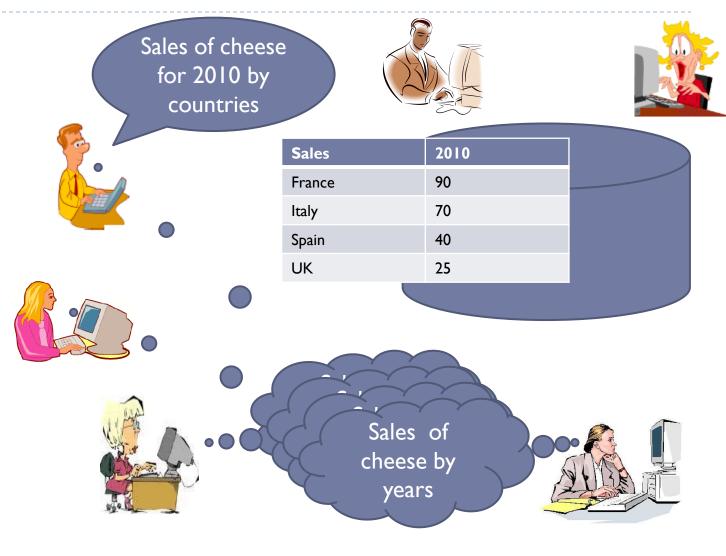
#### Why recommendation?







#### Others?



OLAP query personalisation and eBISS 2011 recommendation

## Four different approaches

- I. Content-based methods based on user preferences
  - Current state, with external data
- 2. Content-based methods based on expectations
  - Current state
- 3. Collaborative methods based on a query log
  - History-based
- 4. Collaborative methods based on log and expectations
  - Current state and history-based

#### All approaches:

Low formulation effort, prescriptive, proactive, low expressiveness

#### 1. Preference-based recommendations [Jerbi & al., 2009]

If query concerns 2009, score of Barcelona is 0.9 The If query concerns N-Y, score of SUM(REVENUE)>5 is 0.8 preferences If query concerns 2009, score of Madrid is 0.4 If query concerns 2010, score of Paris is 0.3 The query SALES CUSTOMER SUM\_(REVENUE) > 10 DATE Year Country ≥ 200 Lyon N-Y Washington Paris

**Recommend:** Add Barcelona to the list of cities Change SUM(REVENUE)>10 by SUM(REVENUE)>5

> OLAP query personalisation and eBISS 2011 recommendation

. . .

## 2. Expectation-based recommendations Discovery driven analysis [Sarawagi, 2000]

| Sales                                                                                 | Sales |     |        |      | The current<br>query result |     |  |
|---------------------------------------------------------------------------------------|-------|-----|--------|------|-----------------------------|-----|--|
| Europe                                                                                |       | 100 |        | quei | y result                    |     |  |
| Not surprising,<br>do not<br>recommend it<br>Quarter I<br>Surprising,<br>recommend it |       |     |        |      |                             |     |  |
| 25                                                                                    | 25    |     |        |      |                             |     |  |
| 25                                                                                    |       |     | Sales  | Jan  | Feb                         | Mar |  |
| 25                                                                                    |       |     | Europe | 80   | 10                          | 10  |  |
| 25                                                                                    |       |     |        |      |                             |     |  |

Sales

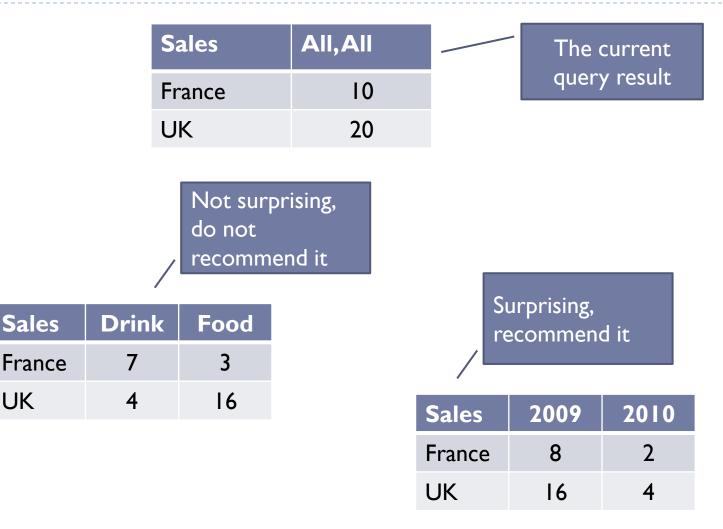
France

Italy

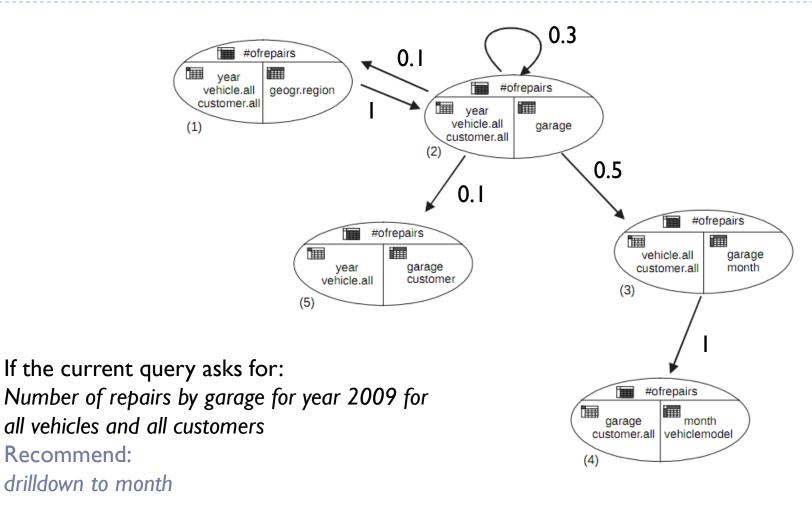
Spain

UK

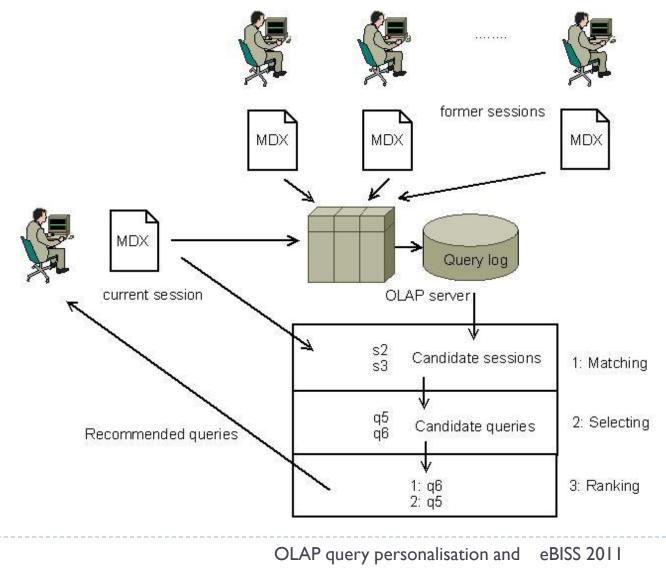
#### 2. Expectation-based recommendations Discovery driven analysis [Cariou & al., 2008]



## 3. Log-based recommendations Promise [Sapia, 2000]



### 3. Log-based recommendations [Giacometti & al., 2009]



recommendation

D

### 3. Log-based recommendations [Giacometti & al., 2009]

- Distances proposed
  - Between positions in a cube
    - Hamming
    - Based on the shortest path in the dimension
  - Between queries
    - Based on dimension-wise differences
    - Hausdorff
  - Between sessions
    - Based on the subsequence
    - Edit distance

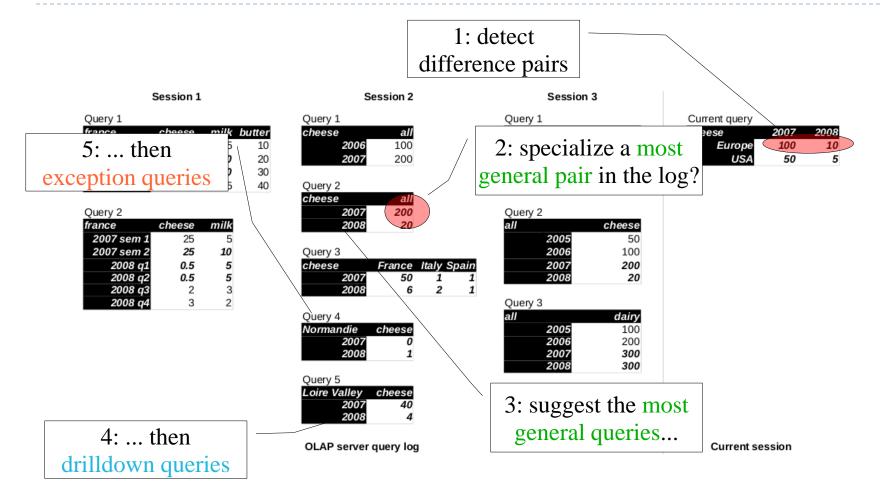
More distances? See "Similarity measures for multidimensional data" by Baikousi, Rogkakos, Vassiliadis at ICDE 2011

# 4. Log and expectation-based recommendations [Giacometti & al., 2009]

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                | (Hm this looks                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Session 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Session 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Session 3                                                                                                                                                                                                                                                                                                                      | strange to me                                                       |
| Query 1         france       cheese       milk       butter         2007 sem 1       25       10       20         2008 sem 1       1       10       30         2008 sem 2       5       5       40         Query 2         france       cheese       milk         2008 sem 2       5       5       40         Query 2         france       cheese       milk         2007 sem 1       25       5         2007 sem 1       25       5         2008 q1       0.5       5         2008 q2       0.5       5         2008 q3       2       3         2008 q4       3       2 | Query 1         2006       100         2007       200         Query 2       2007         Cheese       all         2007       200         2008       20         Query 3       2007         Cheese       France Italy Spain         2007       50       1       1         2008       6       2       1         Query 4       Normandie       cheese       2007       0         Query 5       1       1       2008       1         Query 5       2007       40       2008       4         OLAP server query log       0       208       4 | Query 1       all     goat cheese       2005     10       2006     11       2007     10       2008     11       Query 2     all       2005     50       2006     100       2007     200       2008     20       Query 3     20       all     dairy       2005     100       2006     200       2007     300       2008     300 | Current queryCheese20072008Current session10010Current session10010 |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OLAP auer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y personalisation and                                                                                                                                                                                                                                                                                                          | eBISS 2011                                                          |

recommendation and eBISS 2011

# 4. Log and expectation-based recommendations [Giacometti & al., 2009]



#### Conclusion

## Conclusion

So far...

• Given q, compute q' such that q'  $\subset$  q or q  $\not\subset$  q', q  $\not\subset$  q'

#### The best approach?

- Low formulation effort, proactive, not prescriptive, high expressiveness... yet to be proposed!
- Collaborative for naïve user, content-based for advanced user

#### How about effectiveness?

- Need to categorize database user's navigational behavior
  - A taxonomy exists in the web but not in databases...

## Some open issues

#### Some open issues

- How to learn preferences? Navigational habits?
- Can preferences be revised? What if I don't know what I prefer?
- What about privacy?
- How to handle preferences on data distribution?
- How to assess the quality of a recommendation?
- What recommendation in what context?
- When are two sessions similar?
- How to guess the intent of a query?

. . .

# Bibliography

# Bibliography

#### Motivation

- "The data deluge", The economist (2010)
- H.V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, C.Yu: "Making database systems usable", SIGMOD (2007)
- N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, D. Suciu: "A Case for A Collaborative Query Management System", CIDR (2009)

#### Surveys

- G. Koutrika, Y. Ioannidis, "Personalized systems, from an IR and DB perspective", tutorial at ICDE (2005)
- K. Stefanidis, G. Koutrika, E. Pitoura, "A Survey on Representation, Composition and Application of Preferences in Database Systems", ACM Transactions on Database Systems, to appear
- G.Adomavicius, A. Tuzhilin: "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions", IEEE Trans. Knowl. Data Eng. (2005)

# Bibliography on preferences

- In relational databases
  - Preference Formulas
    - J. Chomicki, "Preference Formulas in Relational Queries", ACM Transactions on Database Systems, 28(4) (2003)
  - Skyline Operator
    - S. Börzsönyi, D. Kossmann & K. Stocker, "The Skyline Operator", ICDE (2001)
  - Preference SQL
    - W. Kießling, G. Köstler, "Preference SQL Design, Implementation, Experiences", VLDB (2002)
  - Query personalisation
    - G. Koutrika, Y. Ioannidis. "Personalization of Queries in Database systems", ICDE (2004)

# Bibliography on preferences

- In multidimensional databases
  - S. Rizzi. "OLAP Preferences: a research agenda". DOLAP (2007)
  - P. Biondi, M. Golfarelli, S. Rizzi. "myOLAP: An Approach to Express and Evaluate OLAP Preferences". IEEE TKDE, to appear
  - L. Bellatreche, A. Giacometti, D. Laurent, P. Marcel, H. Mouloudi "A Personalization Framework for OLAP Queries", DOLAP (2005)
  - J.Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia. "Mining Preferences from OLAP Query Logs for Proactive Personalization", ADBIS (2011)

# Bibliography on recommendation

- Existing approaches in relational databases
  - YMAL
    - Kostas Stefanidis, Marina Drosou, Evaggelia Pitoura, "You May Also Like Results in Relational Databases", PersDB (2009)
  - QueRIE
    - Gloria C., M. Eirinaki, N. Polyzotis, "Query Recommendations for Interactive Database Exploration", SSDBM (2009)
    - J.Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On, N. Polyzotis, J. Swarubini Vindhiya Varman, "SQL QueRIE Recommendations", PVLDB (2010)
  - Recommending join queries
    - X.Yang, C. M. Procopiuc, D. Srivastava, "Recommending Join Queries via Query Log Analysis", ICDE (2009)
  - SnipSuggest
    - N. Khoussainova, Y. Kwon, M. Balazinska, D. Suciu, "SnipSuggest: Context-Aware Autocompletion for SQL", PVLDB (2010)

# Bibliography on recommendation

- Existing approaches in multidimensional databases
  - Expectation-based
    - S. Sarawagi, "Explaining Differences in Multidimensional Aggregates", VLDB (1999)
    - S. Sarawagi, "User-Adaptive Exploration of Multidimensional Data", VLDB (2000)
    - G. Sathe, S. Sarawagi, "Intelligent Rollups in Multidimensional OLAP Data", VLDB (2001)
    - V. Cariou, J. Cubillé, C. Derquenne, S. Goutier, F. Guisnel, H. Klajnmic, "Built-In Indicators to Discover Interesting Drill Paths in a Cube", DaWaK (2008)
  - Preference-based
    - H. Jerbi, F. Ravat, O. Teste, G. Zurfluh, "Preference-Based Recommendations for OLAP Analysis", DaWaK (2009)
  - Log-based
    - C. Sapia, "PROMISE: Predicting Query Behavior to Enable Predictive Caching Strategies for OLAP Systems", DaWaK (2000)
    - A. Giacometti, P. Marcel, E. Negre, "Recommending Multidimensional Queries", DaWaK (2009)
  - Log and expectation-based
    - A. Giacometti, P. Marcel, E. Negre, A. Soulet, "Query recommendations for OLAP discovery driven analysis", IJDWM (2011)