A Geographic Standards based Metamodel to formalize Spatio-Temporal Knowledge in Remote Sensing Applications

Christelle Pierkot

Espace-Dev Research Unit

SECOGIS Workshop 16 october 2012

Outline

Context

Context of study Satellite Image Interpretation

By diverse experts **Remote Sensing** Ecologist, Geographer,

In various thematics Cartography, Urban planning, Environment monitoring,

. . .

. . .

Image Interpretation Process

Image properties

e.g. wavelength, texture

Image Interpretation Process

Image properties Field knowledge e.g. wavelength, texture e.g. Salinity, Leaf type

Issues

 \rightarrow Different knowledge \rightarrow Heterogeneous interpretations \rightarrow Non consensual results

Semantic Gap

Proposal to reduce the semantic gap

1) Define Image and Field ViewPoints

\rightarrow Same features according to different perspectives

2) Take into account Spatio-temporality in both viewpoints

\rightarrow Spatio-temporal concepts are commonly used to define features

3) Formalize Knowledge into ontologies

\rightarrow Represent knowledge in a common formalism \rightarrow Harmonize definitions

4) Formalize commonsense knowledge into a framework ontology

 \rightarrow Give a common basis to describe the viewpoints

- \rightarrow Reuse concepts that appear redundantly
- \rightarrow Facilitate matching between concepts

5) Matching and Reasoning

\rightarrow Ensure Semantic Interpretation

Focus on step 2 : Modeling Spatio-temporal Knowledge

 \rightarrow Favour integration of ST concepts in both viewpoints

 \rightarrow Make easier ST matching between viewpoints

A Spatio-Temporal Metamodel

- $\rightarrow\,$ High level conceptual framework
- $\rightarrow\,$ Based on spatio-temporal expertise and geographic standards
- \rightarrow Providing a standardized semantic description of ST Knowledge
- $\rightarrow\,$ First step of the framework ontology formalization

Spatio-Temporal Metamodel Structure

Organized into 8 Packages

 \rightarrow Aggregate information semantically close \rightarrow Ensure modularity

Core

The Core Package

- Used to characterize the geographical feature as a whole
- Have a direct or indirect dependency on the other packages

A geographic feature is an aggregation of spatial, temporal and thematic dimensions, with which different kinds of relations can be specified.

The SpatialDimension Package

• Directly linked to the CorePackage by the *SpatialDimension* class

→ 3 classes : geometric shape, location
 and geographic identifier
 → Most elements are derived from standards

Geographic standards based metamodel

The Relation Package

• Directly linked to the CorePackage by the *Relation* association class

 \rightarrow Specialized into 3 sub-classes \rightarrow Associated with a definition method

The Spatial Relation Package 3 sub-classes defined by E.Clementini

 \rightarrow Most elements are derived from previous works Egenhofer, RCC8, Frank, ...

How to use this metamodel?

- 1) For each viewpoints, create a model derived from the metamodel
 - a) Define Spatio-Temporal features
 - b) Add Thematic, Spatial and Temporal Characteristics
 - c) Add Semantic, Spatial and Temporal Relationships

- \rightarrow Spatio-Temporal concepts and Relations are derived from the Metamodel
- \rightarrow Thematic Properties and Semantic Relations are specified by the model

How to use this metamodel?

2) Make matching between viewpoints

 \rightarrow Some correspondances are obvious (e.g spatial relations) \rightarrow Others must be explicitly defined (e.g. thematic dimensions)

Field Point of View Model

ightarrow Features classification with spatial and temporal relations

Image Point of View Model

 \rightarrow Image segment thematic characteristics

Examples results

Preliminary Results

Vegetation

Mangrove

Beach

\rightarrow For details, please contact <code>samuel.andres@ird.fr</code>

C. Pierkot (Espace-Dev)

Geographic standards based metamodel

Conclusions

Conclusions

Modular conceptual ST metamodel based on normalized approaches

- Support image interpretation according to the associated point of view
- Easy to use by remote sensing and thematic experts Preliminary interesting results

Perspectives Formalize all concepts into framework and domain ontologies Define more accurate matching Use description logics to enable complex reasoning Refine preliminary results

Thank you for your attention

christelle@pierkot.fr

