Multi-scale Windowing over Trajectory Streams

Kostas Patroumpas

School of Electrical and Computer Engineering National Technical University of Athens, Hellas

GeoStreaming

- Geospatial streams derived from real-time data acquisition
 - geosensors ~ vector data
 imagery/satellite ~ raster data (mostly)
- Interest on monitoring *location-aware* moving objects:
 - numerous vehicles, people, merchandise, animals,...
 - *PRESENT* → record their current *location*
 - PAST → maintain historical *trajectories*
 - FUTURE → predict routes / estimate trends
- Streaming locations from GPS/RFID/GSM...
 - timestamped, georeferenced points pose challenges:
 - > consume fluctuating, intermittent, voluminous positional updates
 - > provide timely response to spatiotemporal Continuous Queries (CQ)
 - > overcome lack of suitable operators in traditional DBMS
- Towards a new processing paradigm: GeoStreaming
 - query evaluation in-memory indexing data reduction/approximation

16 October 2012

SeCoGIS'12

 P_2

 p_1

Windowing over Data Streams

- Continuous queries evaluated against stream "chunks"
 - Infeasible to retain the entire stream "history"
 - for online computation in main memory, not disk-bound storage
 - *Windows* provide a *temporary, bounded portion* of a stream:
 - Sliding

• Tumbling

- Partitioned
 Lai
 - Landmark ...
- Typically *sliding windows* inherent in continuous queries:
 - CQ: "every 10 minutes get average temperature over past 30 minutes" SELECT AVG(S.temperature) FROM S [RANGE 30 MINUTES]

An "Amnesic" Approach

- Handling trajectories of moving objects online
 - Do we need all details of each historical trace?
 - Significance of each isolated position is *time-decaying*
 - Recent positions are far more important
 - Older segments may be compressed or even purged
- Introduce multi-scale windowing over *trajectory streams*
 - Focus on motion over varying time horizons in the past
 - Gradually coarser representations over greater time periods
 - Higher precision reserved for most recent segments
- Core idea extends *multi-granular* windows [TIME'10]
 - Novel "scale" semantics for trajectory simplification
 - Obtain generalized, comparable traces for querying
 - Convey reliable motion characteristics
 - No matter the reporting frequency from objects

Example

- Online simplifier per trajectory at prescribed resolutions & horizons
- Multi-level window
 RANGE 2 HOURS
 SLIDE 15 MINUTES
 SCALE 0.1

RANGE	1	HOUR
SLIDE	5	MINUTES
SCALE	0.	.3

RANGE	15 MINUTES
SLIDE	1 MINUTE
SCALE	0.5

SeCoGIS'12

16 October 2012

Contribution

- Novel composite windows over trajectory streams
 - Capture essential motion features
 - Through multi-scale sliding windows
 - > With parameterized semantics in space and time
 - Effectively "drop detail with age"
 - Through a user-defined "scale" factor
 - Ensure cohesion among trajectory segments
 - Maintenance methods for compressed representation
 - Designate articulation points that leave no gaps between levels
 - Specify continuous queries on trajectories
 - Applicability of typical spatiotemporal predicates
 - Expressiveness & clarity in query syntax

Outline

- Preliminaries: Sliding Windows and beyond
 - Window specifications
 - Multi-granular semantics
 - Trajectory management
- A Framework for Multi-scaling Windows
 - Model & Rationale
 - Semantics of *time-* & *trajectory-*based filtering
 - Properties
- Maintenance of Window States
 - Issues on shared & incremental computation
- Perspectives
 - Expressing windowed spatiotemporal queries
- Concluding Remarks

Time-based Sliding Windows

- Restrict stream items according to their timestamps
 - Fixed-size temporal scope ω [RANGE: 10 min, 1h,...]
 - A time interval against most recent stream items
 - Progression by slide step β [SLIDE: 1 sec, 5 min,...]
 - Stream items expire from the rear bound
 - Possible overlaps: common items between window states

\succ EXAMPLE: window with $\omega = 30, \beta = 10$ time units

16 October 2012

Multi-Granular Semantics

- Sliding window paradigm
 - Typically, a single timeline with all instants at similar detail
- Time implies multiple levels of resolution [LNCS 1399]

> seconds, minutes, hours, days, weeks/months, years ...

- granule γ_k at level k : fixed number of timestamps in $\mathbb T$
 - A set of contiguous timestamps no "holes" or "gaps"
- Consecutive granules at level $k \rightarrow$ a granule at k+1
 - Iteratively define a hierarchy with multiple levels of granularity
- Also applied to spatiotemporal modeling
 - Multi-representations by scale, time, user, point of view [InfSys'06]
 - Multi-granular types, values, conversions, queries [ICOODB'09]
- Sliding windows at subsumable time horizons [TIME'10]
 - Effectively, each window frame represents a granularity level

Multi-level Sliding Windows

- Window W with n levels of granularity [TIME'10]
 - At level k, subwindow W_k specifies a pair $\langle \omega_k, eta_k
 angle$
 - RANGE $\,\omega_k$ backwards from current au_c
 - SLIDE forward periodically by β_k $\beta_{k-1} \leq \beta_k$
 - Hierarchy of nested frames at multiple time horizons
 - We assume a fixed number of granules per level, i.e., $\omega_k = \mu_k \cdot \beta_k$

 $\omega_{k-1} < \omega_k$

– *Issue:* overlapping ranges may *not be synchronized* at each τ_c

Stairwise Maintenance Scheme

- A "flight of stairs" forms a chain of alternating...
 - Core nodes $g_k \rightarrow$ queue items not covered by subordinate frames
 - Auxiliary nodes δ_k -> buffer items expiring from a subwindow
 - Smooth maintenance: no tuples lost in transit between levels

Trajectory Modeling

- Monitor objects moving in a 3-d space
 - Positional samples are 2-d coordinates (x,y)
 - Measured at discrete timestamps t
 - Expressed in primitive units (e.g., seconds)
 - Each object with known identity id
- Massive updates from numerous objects
 - relayed into a server at varying frequency
 - > a positional stream of tuples < id, x, y, t >
- Trajectory of a moving object
 - An evolving sequence of timestamped locations
 - an append-only collection of its GPS waypoints
 - Ever growing traces of too much detail...
 - Exploit time monotonicity + windows
 - to examine lightweight, but connected 3-d paths

Multi-scale Window Semantics

- A window operator over streaming trajectories
 - *Time restriction* \rightarrow focus on recent time periods only
 - Data reduction \rightarrow progressively drop positions by age
 - Exploit spatial + temporal properties of trajectories
- Window is always specified by a continuous query
 - Evaluate CQ against less detailed object paths
 - On-the-fly trajectory compression at varying resolutions
- Operation: Filter object locations at two stages
 - Time-based filtering
 - Finite portions of reported locations at subsumable time intervals
 - Trajectory-based filtering
 - Group locations by object
 - Apply regulated generalization per trajectory at multiple scales

Time-based Filtering

- Retain traces over diverse time horizons
 - Each window W_k has its own specs $\langle \omega_k, \beta_k
 angle$
 - All window frames initially applied at time au_0
 - At any $au_c \geq au_0$, each W_k has a scope
 - i.e., the current window *bounds*
 - $[\max\{\tau_0, \tau_c \lambda_k \omega_k + 1\}, \tau_c \lambda_k]$
- Frames slide forward discontinuously
 - At a time-varying lag $\lambda_k = mod(\tau_c \tau_0, \beta_k)$
 - Not at each timestamp or upon arrival of items
 - Both bounds always move in tandem
- $C_k(\tau_c)$: *Time-filtered state* per frame W_k
 - i.e., positions measured during past periods
 - last 15 min, 1 hour, 2 hours etc.

Trajectory-based Filtering

- A *demultiplexing* phase per frame W_k
 - Partition items in $C_k(\tau_c)$ into distinct paths
 - $path_k(i)$: time-ordered positions per object i
 - Still, filtered data may be considerable
 - for windows with large scopes or many levels
- Maybe diverse *reporting rate* ρ_i per object
 - $ho_i \cdot \omega_k$ locations relayed during interval ω_k
 - Randomly discard or judiciously select samples
 - Let $\delta_k^i \cdot \omega_k$ locations remain at most
- $\sigma_k = \frac{\delta_k^i}{\rho_i}$: reduction ratio applied to $path_k(i)$
 - A common scale $\sigma_k < 1$ per frame W_k
 - Prescribes max detail tolerated at each path
 - A reduced $path'_k(i)$ is derived

Trajectory-filtered Window States

- Reduced paths do *not* have equal sample counts
 - Each trajectory is smoothed *separately*
 - but yields comparable representations
 - Derived paths are *connected* with no gaps
 - Thanks to inherent timestamp ordering
 - Approximate according to motion pattern & reporting frequency
 - e.g., discard superfluous points when moving along a straight path at constant speed
 - Smaller scale $\sigma_k \rightarrow$ more approximation
 - Trajectory-filtered state per level W_k

$$\succ \mathcal{W}_k(\tau_c) = \{ path'_k(i), \forall object \ i \}$$

- At each scale, one compressed sequence of samples per object
 - not just dispersed timestamped locations

Discussion

- Windowing applies to query evaluation, not storage
 - Original trajectories do *not* become multi-granular
 - Granules: levels of detail for reduced paths
 - Relationships among granularities are useful
 - "finer-than", "coarser-than" may simplify processing
 - Uniform, simple underlying data model
 - must include *position* + *timestamp*
 - > Windows only provide *temporary paths* to queries
 - User-defined parameterization for **RANGE**, **SLIDE**, **SCALE**
 - Multi-scale windowing is *novel* in data stream processing
 - Distinguished from *partitioned windows*
 - Differs from *load shedding* policies
 - A "*path-creation*" step is employed to provide sequential data

Window Maintenance Issues

- Window-based trajectory simplification
 - A repetitive task due to evolving trajectories
 - Incremental \rightarrow fresh positions are being relayed
 - Shared \rightarrow reuse any paths already available
 - Exploit point samples across window frames?
 - More detailed representations closer to now
 - Fewer samples remain in coarser frames
 - Discard points upwards in window hierarchy
 - Coordinated maintenance of multiple paths
 - Preserve certain articulation points per trajectory
 - Pick samples temporally close to frame bounds
 - Minimize approximation error ~ trajectory fitting
 - Also a cohesive "seamless" overview of motion
 - non-overlapping paths joined at articulations

Trajectory Smoothing

- Alternatives for enforcing scale factor σ_k per frame W_k
 - Systematic sampling per trajectory
 - Start from most recent object position per frame
 - Randomly pick a sample from each successive batch of $\left\lceil \frac{p_i}{\delta_i^i} \right\rceil$ points
 - Single-pass method; may yield distorted paths
 - Minimal distance errors
 - Eliminate points incurring the least change in shape
 - Attain bounded space cost per level ($\sigma_k \cdot \omega_k$ locations)
 - > Multi-pass algorithm; a Douglas-Peucker variant
 - Online filtering at frame transitions
 - Employ stairwise scheme
 - Only buffer nodes contain candidate positions for filtering
 - Drop samples when aging locations ascend through window hierarchy
 - > Inherent nesting: no need to handle segments covered by lower frames

Windowed Queries on Trajectories

- Each window instantiation offers
 - An updated set of recent paths per monitored object
 - Contiguous traces \rightarrow typical trajectories, *although approximate*
- Proposed *language constructs* to abstract data features
 - Functions returning "timestamped polylines"
 - trace(): reconstructs a separate path per subwindow
 - trajectory(): yields seamless synopsis from multi-scaled segments
 - Result is a sequence of locations per object
 - *Topological* operators can be applied:
 - > INTERSECTS, WITHIN, CROSSES, ...
 - Spatiotemporal functions more meaningful:
 - > speed, duration, heading, distance, ...
 - Concise window clause for expressiveness
 - combining **RANGE**, **SLIDE**, **SCALE** parameters for all levels

Usage of Language Constructs

- Assume a positional stream S <id, pos, t> from vehicles
 - CQ1: Estimate average speed against varying time periods & scales SELECT AVG(speed(trace(S.pos))), WSCOPE(*) FROM S [RANGES 1 HOUR, 15 MINUTES, 1 MINUTE SLIDES 5 MINUTES, 1 MINUTE, 10 SECONDS SCALES 0.1, 0.2, 0.5 BY S.id];

– CQ2: Indicate vehicles circulating in greater Athens recently

```
SELECT S.id, duration(trajectory(S.pos))
FROM S [RANGES 30 MINUTES, 10 MINUTES, 1 MINUTE
SLIDES 10 MINUTES, 1 MINUTE, 15 SECONDS
SCALES 0.1, 0.2, 0.4 BY S.id],
Cities C
WHERE trajectory(S.pos) WITHIN C.polygon
```

```
AND C.name='Athens';
```

Perspectives

- Applications
 - Fleet management
 - Traffic surveillance
 Maritime control
 - Wildlife preservation
 Soldier tracking …
- Operations

- Merchandise monitoring
- Trajectory filtering for range or k-NN search
 - lightweight, synchronized trajectories at comparable scales
- Ageing synopses for trajectories
 - smoothly updated, gracefully compressed
- Motion mining
 - trends and patterns at varying resolutions
- Online multi-grained aggregates
 - speed, heading, ... to analyze motion per trajectory
- Advanced visualization on maps at diverse zoom levels

Conclusions

- Towards a foundation for a novel windowing operator
 - At multiple resolutions against streaming trajectory data
 - Semantics based on spatial + temporal properties
 - Not only restricting scope on recent features
 - But also progressively *dropping redundant details*
 - Opportunities for efficient shared evaluation
 - Useful in expressing spatiotemporal continuous queries
- Directions for further study
 - Incremental maintenance of multiple window states
 - Strategies trading off performance vs. quality of approximation
 - Verify scalability & robustness against workloads
 - Experimentation on real / synthetic datasets

Multi-scale Windowing over Trajectory Streams

Thank you!

16 October 2012