Using the DBV model to maintain versions of multi-scale geospatial data

Laboratory of Information Systems (LIS) Institute of Computing – UNICAMP – Brazil

João Sávio C. Longo Luís Theodoro O. Camargo Claudia Bauzer Medeiros André Santanchè

Outline

- 1. Motivation and goal
- 2. Central idea extend the DBV model
- 3. Our approach
- 4. Conclusions and future work

Motivation and goal

Multi-scale data

Scale 1:250k

Scale 1:1M

Problems attacked

- 1)How to manage multi-scale data?
- 2)How to trace real world evolution through time?
- 3)How to represent alternative scenarios?

Current approaches

- Generalization algorithms (computation centric)
 - real time computation e.g. agents
 - costly if there are continuous updates to the data
- Multi-representation databases (MRDB) (data centric)
 - data structures to store and link multi-representation data
 - costly if there are many scales to store
- Hybrid store some scales, compute others
 - more flexible, but still lots of issues to solve

Goal

Propose a data-centric model that supports generalization plus MRDBs to:

- manage multi-scale data
- trace real world evolution
- represent alternative scenarios for a given scale

Central idea – extend the DBV model

DBV model

DBV model

- DBV (Database Version)
 - represents a possible state or version of the database
- Not only temporal versioning
 - any stored modification can be a version
- Save storage space
 - only the changes must be stored
 - unchanged data are shared from previous DBVs

Derivation tree

DBV	Data
d0	_

DBV	Data
d0	_
d 1	- watershed polygons

DBV	Data
d0	-
d1	- watershed polygons
d2	watershed polygonsrivers

DBV	Data
d0	-
d1	- watershed polygons
d2	watershed polygonsrivers
d3	watershed polygonsmain river

Our approach

Overview

It is an extension of the DBV model, in which:

- each scale has its own derivation tree
- all trees grow and shrink together
- scenario set of DBVs with same version stamp

DBV multi-scale platform

- Open source
- http://code.google.com/p/dbv-ms-api
 - plataform
 - sample project
 - web manager

General architecture

Case study

- Watershed multi-scale data Rio Pardo/Brazil
 - 1:250k
 - 1:1M
- Content 5641 geometric objects:
 - watershed polygons
 - rivers

Starting from an empty database, with two possible stored scales

Scale 1:250k

Scale 1:1M

Building scenario 0

1:250k

1:1M 22

scenario – set of DBVs, each corresponding to a given stored scale, at the same time
trees grow and shrink together

Scale 1:250k

Scale 1:1M

1:250k

1:1M 24

Scale 1:250k

Scale 1:1M

Created by João Sávio C. Longo - joaosavio@gmail.com

1:250k

1:1M 26

Scale 1:250k

Scale 1:1M

Created by João Sávio C. Longo - joaosavio@gmail.com

Created by João Sávio C. Longo - joaosavio@gmail.com

1:250k

1:1M 28

Conclusions and future work

Conclusions

- 1)How to manage multi-scale data?
 - DBV multi-scale platform
 - flexible MRDB links through version stamps
- 2)How to trace real world evolution through time?
 - derivation tree
- 3)How to represent alternative scenarios?
 - creating branches
 - DBV model (in other approaches, evolution requires replication)

Future work

- Versioning along the temporal scale
- Specification and management of integrity constraints across scales, to determine rules for update propagation

Acknowledgments

- LIS (Laboratory of Information Systems)
- UNICAMP IC
- FAPESP 2011/14280-0
- FAPESP Microsoft Research Navscales
- Capes
- Embrapa
- INCT Web Science
- CNPq
- MuZoo
- PRONEX

Thank you!

UML model

- control over the types of versioned objects

Architecture

MRDB

Link stored multi-representation data

1:20k

1:50k

MRDB

- There are many real world objects in the example:
 - watershed
 - main river
 - all other rivers with name
- Each stored geometry is a physical version of an object
- So, in a DBV **d**, a **logical version** of a multiversion object **o** is represented by a physical version **pv**

Back to scenario 0.1.1

Created by João Sávio C. Longo - joaosavio@gmail.com

1:250k

1:1M 40

Scenario 0.1.1.1

Created by João Sávio C. Longo - joaosavio@gmail.com

1:250k

1:1M 41