A FUZZY SPATIO-TEMPORAL APPROACH FOR ACTIVITY RECOGNITION

Jean-Marie Le Yaouanc, Jean-Philippe Poli

SeCoGIS

16 octobre 2012

Cea outline

Context of this work

What is CEA ?

What is Egidium Technologies?
What is the goal of this work?
A brief introduction to fuzzy logic
Activity recognition
Focused activities

CONTEXT

What is CEA ?

■ Atomic Energy and Alternative Energies Commission

- Fundamental and applied research
- Major actor in research and innovation

What is CEA Tech ?

- Technological Research Division at CEA
- RTO
- Work is funded by private companies

What is Egidium Technologies

■ Surveillance software editor

- Joint lab Egidium Technologies / CEA Tech

Cea context

Goal

- Improving the surveillance software
- Characterizing activities of geolocalized entities

Examples

- Agents situation awareness
- Monitoring of autonomous robots
- Crowd in public space
- Fleet of vehicles

Constraints

- The product of our work must be customisable for many applications
- Using Egidium's GIS

list

A BRIEF INTRODUCTION TO FUZZY
 LOGIC

A BRIEF INTRODUCTION TO FUZZY LOGIC

Definition

■ Introduced by Zadeh in 1965

- Many-valued logic
- Truth values range between 0 and 1

Membership functions and linguistic variables

- Membership functions measure how an object belongs to a set

■ Linguistic variables introduce vocabulary to characterize a physical variable

A BRIEF INTRODUCTION TO FUZZY LOGIC

Definition

■ Introduced by Zadeh in 1965

- Many-valued logic
- Truth values range between 0 and 1

Membership functions and linguistic variables

- Membership functions measure how an object belongs to a set
- Linguistic variables introduce vocabulary to characterize a physical variable

A BRIEF INTRODUCTION TO FUZZY LOGIC

Definition

- Introduced by Zadeh in 1965
- Many-valued logic
- Truth values range between 0 and 1

Membership functions and linguistic variables

- Membership functions measure how an object belongs to a set
- Linguistic variables introduce vocabulary to characterize a physical variable

A BRIEF INTRODUCTION TO FUZZY LOGIC

Denotation

- $\mu_{\text {cold }}(\mathrm{t})$ denotes membership function cold applied to t

Fuzzy expressions

■ Fuzzy proposition: X is A , ex.: temperature is cold

- Expressions can be built with t-norms and t-conorms
- Not:1's complement

■ Zadeh's t-norm and t-conorm (most used): min / max

Advantages

- Deals with uncertainty and vagueness
- Simple computation

ACTIVITY RECOGNITION

ACTIVITY RECOGNITION

e is moving

■ e is moving \Leftrightarrow the distance from the last position is greater than 0

- Let $P_{1}=$ the distance is greater than 0

Cea Activity recognition

e is moving

- e is moving at time t :

$$
\mu\left(p_{1}, t\right) \vee \operatorname{mean}_{t^{\prime}} \mu\left(p_{1}, t^{\prime}\right)
$$

Cea Activity recognition

e is moving

- e is moving at time t :

$$
\underset{\text { present time }}{\mu\left(p_{1}, t\right)} \vee \operatorname{mean}_{\mathrm{t}^{\prime} \in I} \mu\left(p_{1}, t^{\prime}\right)
$$

Cea Activity recognition

e is moving

- e is moving at time t :

$$
\mu\left(p_{1}, t\right) \vee \underset{\substack{\operatorname{mean}_{t^{\prime} \in I} \\ \text { recent past }(I)}}{ }
$$

Cea Activity recocnition

e is moving

- e is moving at time t :

$$
\mu\left(p_{1}, t\right) \vee \underset{\substack{\operatorname{mean}_{t^{\prime} \in I} \\ \text { recent past }(l)}}{ } \mu\left(p_{1}, t^{\prime}\right)
$$

- Mean can be a weighted average (the most recent, the most important) Ex. the last few seconds are more important than the last minute

cea
 ACTIVITY RECOGNITION

e is moving

- e is moving at time t:

If the entity has just begun to move...

$$
\mu\left(p_{1}, t\right) \vee \underbrace{\sqrt[\operatorname{mean}_{t^{\prime} \in I}]{ } \mu\left(p_{1}, t^{\prime}\right)}_{0}
$$

...it only considers the very present

Cea Activity recognition

e is moving

■ e is moving at time t:
If the entity has just stopped...

...it decreases more and more regarding the past (customisable)

Cea Activity recocnition

e is coming close to the object o (polyline)

Object o

- P is the current position of e
- N is the closest point from e to o
- $\overrightarrow{P Q}$ is the direction of e

Cla Activity recognition

e is coming close to the object o (polyline)

Object o

- e must be moving
- $\cos (\alpha)$ must tend to 1

■ the past orientations must be directed toward the object too

Cla Activity recognition

e is coming close to the object o (polyline)

Object o

- Let p_{2} denote: $\cos (\alpha)$ tends to 1

Cea Activity recocnition

e is coming close to the object o (polyline)

- e is coming close to the object o is defined by:

$$
\operatorname{IsMoving}(e, t) \wedge\left(\mu\left(p_{2}, t\right) \vee \operatorname{mean}_{\mathbf{t}^{\prime} \in I^{\prime}} \mu\left(p_{2}, t^{\prime}\right)\right)
$$

Same remarks as previous formula

Cla ActIVITY RECOGNITION

e is coming close to the object o (closed object)

- More complicated

- This time $\cos (|\alpha-\beta|)$ must tend to 1

■ e must be outside o
List

Cea Activity recocnition

e is coming close to the object o (closed object)

- More complicated

- Let p_{3} denote $\cos (|\alpha-\beta|)$ must tend to 1

Cea Activity recognition

e is coming close to the object o (closed object)

- e is coming close to the object o is defined by:

$$
\begin{aligned}
& \text { IsMoving }(e, t) \\
& \wedge \wedge_{t \prime \in I_{2}}^{\operatorname{disjoint}\left(e, o, t^{\prime}\right)} \\
& \wedge\left(\mu\left(p_{3}, t\right) \vee \operatorname{mean}_{\mathrm{t}^{\prime} \in I_{3}} \mu\left(p_{3}, t^{\prime}\right)\right)
\end{aligned}
$$

Same remarks as previous formula

Cea Activity recocnition

e is going away from the object o

- On the same basis, we can define this relationship
- $\cos (\alpha)$ or $\cos (|\alpha-\beta|)$ must tend to - 1 instead

Cla Activity recognition

e is going along the object o

- Let p_{6} be «e is near o »
- e is going along o if:
e and o are disjoint since a certain timespan I_{2} (such as $t \in I_{2}$)
e is near o since a certain timespan I_{2} (such as $t \in I_{2}$)
e is moving
$\operatorname{IsMoving}(e, t)$
$\wedge \wedge_{t \prime \in I_{2}} \operatorname{disjoint}\left(e, o, t^{\prime}\right)$
$\wedge \wedge_{t \in I_{2}} \mu\left(p_{6}, t^{\prime}\right)$

CONCLUSION

 AND FUTURE WORK
CONCLUSION AND FUTURE WORK

- We now have more than a dozen of relationships
- More relationships are coming
- All implemented and interfaced with Egidium's software: distances, inclusions are computed by their GIS
- Test with a scenario at the end of the year
- GUI to simply customize the relationships and check the correctness

Thank you for your attention...

Centre de Saclay | 91191 Gif-sur-Yvette Cedex
T. +33 (0)1 69087856 | E. jean-philippe.poli@cea.fr

